Difference between revisions of "2006 AIME I Problems/Problem 8"
m |
Williamhu888 (talk | contribs) m (→Solution) |
||
Line 7: | Line 7: | ||
Let <math>x</math> denote the common side length of the rhombi. | Let <math>x</math> denote the common side length of the rhombi. | ||
Let <math>y</math> denote one of the smaller interior [[angle]]s of rhombus <math> \mathcal{P} </math>. Then <math>x^2\sin(y)=\sqrt{2006}</math>. We also see that <math>K=x^2\sin(2y) \Longrightarrow K=2x^2\sin y \cdot \cos y \Longrightarrow K = 2\sqrt{2006}\cdot \cos y</math>. Thus <math>K</math> can be any positive integer in the [[interval]] <math>(0, 2\sqrt{2006})</math>. | Let <math>y</math> denote one of the smaller interior [[angle]]s of rhombus <math> \mathcal{P} </math>. Then <math>x^2\sin(y)=\sqrt{2006}</math>. We also see that <math>K=x^2\sin(2y) \Longrightarrow K=2x^2\sin y \cdot \cos y \Longrightarrow K = 2\sqrt{2006}\cdot \cos y</math>. Thus <math>K</math> can be any positive integer in the [[interval]] <math>(0, 2\sqrt{2006})</math>. | ||
− | <math>2\sqrt{2006} = \sqrt{8024}</math> and <math>89^2 = 7921 < 8024 < 8100 = 90^2</math>, so <math>K</math> can be any [[integer]] between 1 and 89, inclusive. Thus the number of positive values for <math>K</math> is 089. | + | <math>2\sqrt{2006} = \sqrt{8024}</math> and <math>89^2 = 7921 < 8024 < 8100 = 90^2</math>, so <math>K</math> can be any [[integer]] between 1 and 89, inclusive. Thus the number of positive values for <math>K</math> is <math>\boxed{089}</math>. |
== See also == | == See also == |
Revision as of 00:03, 9 March 2012
Problem
Hexagon is divided into five rhombuses, and as shown. Rhombuses and are congruent, and each has area Let be the area of rhombus . Given that is a positive integer, find the number of possible values for .
Solution
Let denote the common side length of the rhombi. Let denote one of the smaller interior angles of rhombus . Then . We also see that . Thus can be any positive integer in the interval . and , so can be any integer between 1 and 89, inclusive. Thus the number of positive values for is .
See also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |