Difference between revisions of "2006 AMC 10A Problems/Problem 11"

 
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Which of the following describes the graph of the equation <math>\displaystyle(x+y)^2=x^2+y^2</math>?
+
Which of the following describes the graph of the equation <math>(x+y)^2=x^2+y^2</math>?
 +
 
 +
<math> \mathrm{(A) \ } \textrm{the\,empty\,set}\qquad \mathrm{(B) \ } \textrm{one\,point}\qquad \mathrm{(C) \ } \textrm{two\,lines} \qquad \mathrm{(D) \ } \textrm{a\,circle} \qquad \mathrm{(E) \ } \textrm{the\,entire\,plane} </math>
  
<math> \mathrm{(A) \ } the empty set\qquad \mathrm{(B) \ } one point\qquad \mathrm{(C) \ } two lines\qquad \mathrm{(D) \ } a circle\qquad \mathrm{(E) \ } the entire plane </math>
 
 
== Solution ==
 
== Solution ==
== See Also ==
+
Expanding the left side, we have
*[[2006 AMC 10A Problems]]
+
 
 +
<math>x^2+2xy+y^2=x^2+y^2\Longrightarrow 2xy=0\Longrightarrow xy=0\Longrightarrow x = 0 \textrm{ or } y = 0</math>
 +
 
 +
Thus there are two [[line]]s described in this graph, the horizontal line <math>y = 0</math> and the vertical line <math>x=0</math>. Thus, our answer is <math>\mathrm{(C) \ }</math>.
 +
 
 +
== See also ==
 +
{{AMC10 box|year=2006|ab=A|num-b=10|num-a=12}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 11:31, 4 July 2013

Problem

Which of the following describes the graph of the equation $(x+y)^2=x^2+y^2$?

$\mathrm{(A) \ } \textrm{the\,empty\,set}\qquad \mathrm{(B) \ } \textrm{one\,point}\qquad \mathrm{(C) \ } \textrm{two\,lines} \qquad \mathrm{(D) \ } \textrm{a\,circle} \qquad \mathrm{(E) \ } \textrm{the\,entire\,plane}$

Solution

Expanding the left side, we have

$x^2+2xy+y^2=x^2+y^2\Longrightarrow 2xy=0\Longrightarrow xy=0\Longrightarrow x = 0 \textrm{ or } y = 0$

Thus there are two lines described in this graph, the horizontal line $y = 0$ and the vertical line $x=0$. Thus, our answer is $\mathrm{(C) \ }$.

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png