Difference between revisions of "2006 AMC 10A Problems/Problem 17"

m (added category and link to previous and next problem)
m (+ imgs)
Line 3: Line 3:
  
 
<math>\mathrm{(A) \ } \frac{1}{2}\qquad\mathrm{(B) \ } \frac{\sqrt{2}}{2}\qquad\mathrm{(C) \ } \frac{\sqrt{3}}{2}\qquad\mathrm{(D) \ } \frac{2\sqrt{2}}{2}\qquad\mathrm{(E) \ } \frac{2\sqrt{3}}{3}\qquad</math>
 
<math>\mathrm{(A) \ } \frac{1}{2}\qquad\mathrm{(B) \ } \frac{\sqrt{2}}{2}\qquad\mathrm{(C) \ } \frac{\sqrt{3}}{2}\qquad\mathrm{(D) \ } \frac{2\sqrt{2}}{2}\qquad\mathrm{(E) \ } \frac{2\sqrt{3}}{3}\qquad</math>
 +
 +
[[Image:2006_AMC10A-17.png]]
 +
 +
__TOC__
 
== Solution ==
 
== Solution ==
== See Also ==
+
=== Solution 1 ===
*[[2006 AMC 10A Problems]]
+
It is not difficult to see by [[symmetry]] that <math>WXYZ</math> is a [[square]].
 +
 
 +
[[Image:2006_AMC10A-17a.png]]
 +
 
 +
Draw <math>\overline{BZ}</math>. Clearly <math>BZ = \frac 12AH = 1</math>. Then <math>\displaystyle \triangle BWZ</math> is [[isosceles]], and is a <math>45-45-90 \triangle</math>. Hence <math>WZ = \frac{1}{\sqrt{2}}</math>, and <math>[WXYZ] = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac 12\ \mathrm{(A)}</math>.
 +
 
 +
There are many different similar ways to come to the same conclusion using different 45-45-90 triangles.
 +
 
 +
=== Solution 2 ===
 +
[[Image:2006_AMC10A-17b.png]]
  
*[[2006 AMC 10A Problems/Problem 16|Previous Problem]]
+
Draw the lines as shown above, and count the squares. There are 12, so we have <math>\frac{2\cdot 3}{12} = \frac 12</math>.
  
*[[2006 AMC 10A Problems/Problem 18|Next Problem]]
+
== See Also ==
 +
{{AMC10 box|year=2006|num-b=16|num-a=18|ab=A}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 18:58, 15 September 2007

Problem

In rectangle $ADEH$, points $B$ and $C$ trisect $\overline{AD}$, and points $G$ and $F$ trisect $\overline{HE}$. In addition, $AH=AC=2$. What is the area of quadrilateral $WXYZ$ shown in the figure?

$\mathrm{(A) \ } \frac{1}{2}\qquad\mathrm{(B) \ } \frac{\sqrt{2}}{2}\qquad\mathrm{(C) \ } \frac{\sqrt{3}}{2}\qquad\mathrm{(D) \ } \frac{2\sqrt{2}}{2}\qquad\mathrm{(E) \ } \frac{2\sqrt{3}}{3}\qquad$

2006 AMC10A-17.png

Solution

Solution 1

It is not difficult to see by symmetry that $WXYZ$ is a square.

2006 AMC10A-17a.png

Draw $\overline{BZ}$. Clearly $BZ = \frac 12AH = 1$. Then $\displaystyle \triangle BWZ$ is isosceles, and is a $45-45-90 \triangle$. Hence $WZ = \frac{1}{\sqrt{2}}$, and $[WXYZ] = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac 12\ \mathrm{(A)}$.

There are many different similar ways to come to the same conclusion using different 45-45-90 triangles.

Solution 2

2006 AMC10A-17b.png

Draw the lines as shown above, and count the squares. There are 12, so we have $\frac{2\cdot 3}{12} = \frac 12$.

See Also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions