Difference between revisions of "2006 AMC 10A Problems/Problem 17"

(Problem)
(Solution)
Line 16: Line 16:
 
<math>\textbf{(A) } \frac{1}{2}\qquad\textbf{(B) } \frac{\sqrt{2}}{2}\qquad\textbf{(C) } \frac{\sqrt{3}}{2}\qquad\textbf{(D) } \sqrt{2} \qquad\textbf{(E) } \frac{2\sqrt{3}}{3}\qquad</math>
 
<math>\textbf{(A) } \frac{1}{2}\qquad\textbf{(B) } \frac{\sqrt{2}}{2}\qquad\textbf{(C) } \frac{\sqrt{3}}{2}\qquad\textbf{(D) } \sqrt{2} \qquad\textbf{(E) } \frac{2\sqrt{3}}{3}\qquad</math>
  
== Solution ==
+
== Solution 1 ==
=== Solution 1 ===
+
By [[symmetry]], <math>WXYZ</math> is a square.
By [[symmetry]], <math>WXYZ</math> is a [[square]].
 
  
 
<asy>
 
<asy>
Line 33: Line 32:
 
</asy>
 
</asy>
  
Draw <math>\overline{BZ}</math>. <math>BZ = \frac 12AH = 1</math>, so <math>\triangle BWZ</math> is a <math>45-45-90 \triangle</math>. Hence <math>WZ = \frac{1}{\sqrt{2}}</math>, and <math>[WXYZ] = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac 12\ \mathrm{(A)}</math>.
+
Draw <math>\overline{BZ}</math>. <math>BZ = \frac 12AH = 1</math>, so <math>\triangle BWZ</math> is a <math>45-45-90 \triangle</math>. Hence <math>WZ = \frac{1}{\sqrt{2}}</math>, and <math>[WXYZ] = \left(\frac{1}{\sqrt{2}}\right)^2 =\boxed{\textbf{(A) }\frac 12}</math>.
  
 
There are many different similar ways to come to the same conclusion using different [[right triangle|45-45-90 triangles]].
 
There are many different similar ways to come to the same conclusion using different [[right triangle|45-45-90 triangles]].
Line 51: Line 50:
 
</asy>
 
</asy>
  
Drawing lines as shown above and piecing together the triangles, we see that <math>ABCD</math> is made up of 12 squares congruent to <math>WXYZ</math>. Hence <math>[WXYZ] = \frac{2\cdot 3}{12} = \frac 12</math>.
+
Drawing lines as shown above and piecing together the triangles, we see that <math>ABCD</math> is made up of <math>12</math> squares congruent to <math>WXYZ</math>. Hence <math>[WXYZ] = \frac{2\cdot 3}{12} =\boxed{\textbf{(A) }\frac 12} </math>.
  
 
=== Solution 3 ===
 
=== Solution 3 ===
We see that if we draw a line to <math>BZ</math> it is half the width of the rectangle so that length would be <math>1</math>, and the resulting triangle is a <math>45-45-90</math> so using the Pythagorean Theorem we can get that each side is <math>\sqrt{\frac{1^2}{2}}</math> so the area of the middle square would be <math>(\sqrt{\frac{1^2}{2}})^2=(\sqrt{\frac{1}{2}})^2=\frac{1}{2}</math> which is our answer.
+
We see that if we draw a line to <math>BZ</math> it is half the width of the rectangle so that length would be <math>1</math>, and the resulting triangle is a <math>45-45-90</math> so using the [[Pythagorean Theorem]] we can get that each side is <math>\sqrt{\frac{1^2}{2}}</math> so the area of the middle square would be <math>(\sqrt{\frac{1^2}{2}})^2=(\sqrt{\frac{1}{2}})^2=\frac{1}{2}</math> which is our answer.
  
 
=== Solution 4 ===
 
=== Solution 4 ===

Revision as of 12:10, 17 December 2021

Problem

In rectangle $ADEH$, points $B$ and $C$ trisect $\overline{AD}$, and points $G$ and $F$ trisect $\overline{HE}$. In addition, $AH=AC=2$, and $AD=3$. What is the area of quadrilateral $WXYZ$ shown in the figure?

[asy] size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,2); B=(1,2); C=(2,2); D=(3,2); H=(0,0); G=(1,0); F=(2,0); E=(3,0); D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); D(A--F); D(B--E); D(D--G); D(C--H); Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); D(A--D--E--H--cycle); [/asy]

$\textbf{(A) } \frac{1}{2}\qquad\textbf{(B) } \frac{\sqrt{2}}{2}\qquad\textbf{(C) } \frac{\sqrt{3}}{2}\qquad\textbf{(D) } \sqrt{2} \qquad\textbf{(E) } \frac{2\sqrt{3}}{3}\qquad$

Solution 1

By symmetry, $WXYZ$ is a square.

[asy] size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,2); B=(1,2); C=(2,2); D=(3,2); H=(0,0); G=(1,0); F=(2,0); E=(3,0); D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); D(A--F); D(B--E); D(D--G); D(C--H); Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); MP("1",(A+B)/2,2*N); MP("2",(A+H)/2,plain.W); D(B--Z); MP("1",(B+Z)/2,plain.W); MP("\frac{\sqrt{2}}{2}",(W+Z)/2,plain.SE); D(A--D--E--H--cycle); [/asy]

Draw $\overline{BZ}$. $BZ = \frac 12AH = 1$, so $\triangle BWZ$ is a $45-45-90 \triangle$. Hence $WZ = \frac{1}{\sqrt{2}}$, and $[WXYZ] = \left(\frac{1}{\sqrt{2}}\right)^2 =\boxed{\textbf{(A) }\frac 12}$.

There are many different similar ways to come to the same conclusion using different 45-45-90 triangles.

Solution 2

[asy] size(7cm); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,2); B=(1,2); C=(2,2); D=(3,2); H=(0,0); G=(1,0); F=(2,0); E=(3,0); D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,SE); D('F',F,SE); D('G',G,SW); D('H',H,SW); D(A--F); D(B--E); D(D--G); D(C--H); Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H); D('W',W,1.6*N); D('X',X,1.6*plain.E); D('Y',Y,1.6*S); D('Z',Z,1.6*plain.W); D(B--D((A+H)/2)--G);D(C--D((E+D)/2)--F); D(A--D--E--H--cycle); [/asy]

Drawing lines as shown above and piecing together the triangles, we see that $ABCD$ is made up of $12$ squares congruent to $WXYZ$. Hence $[WXYZ] = \frac{2\cdot 3}{12} =\boxed{\textbf{(A) }\frac 12}$.

Solution 3

We see that if we draw a line to $BZ$ it is half the width of the rectangle so that length would be $1$, and the resulting triangle is a $45-45-90$ so using the Pythagorean Theorem we can get that each side is $\sqrt{\frac{1^2}{2}}$ so the area of the middle square would be $(\sqrt{\frac{1^2}{2}})^2=(\sqrt{\frac{1}{2}})^2=\frac{1}{2}$ which is our answer.

Solution 4

Since $B$ and $C$ are trisection points and $AC = 2$, we see that $AD = 3$. Also, $AC = AH$, so triangle $ACH$ is a right isosceles triangle, i.e. $\angle ACH = \angle AHC = 45^\circ$. By symmetry, triangles $AFH$, $DEG$, and $BED$ are also right isosceles triangles. Therefore, $\angle WAD = \angle WDA = 45^\circ$, which means triangle $AWD$ is also a right isosceles triangle. Also, triangle $AXC$ is a right isosceles triangle.

Then $AW = AD/\sqrt{2} = 3/\sqrt{2}$, and $AX = AC/\sqrt{2} = 2/\sqrt{2}$. Hence, $XW = AW - AX = 3/\sqrt{2} - 2/\sqrt{2} = 1/\sqrt{2}$.

By symmetry, quadrilateral $WXYZ$ is a square, so its area is \[XW^2 = \left( \frac{1}{\sqrt{2}} \right)^2 = \boxed{\frac{1}{2}}.\]

~made by AoPS (somewhere) -put here by qkddud~

Video Solution by the Beauty of Math

https://www.youtube.com/watch?v=GX33rxlJz7s

~IceMatrix

See Also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png