# Difference between revisions of "2006 AMC 10A Problems/Problem 20"

## Problem

Six distinct positive integers are randomly chosen between 1 and 2006, inclusive. What is the probability that some pair of these integers has a difference that is a multiple of 5? $\mathrm{(A) \ } \frac{1}{2}\qquad\mathrm{(B) \ } \frac{3}{5}\qquad\mathrm{(C) \ } \frac{2}{3}\qquad\mathrm{(D) \ } \frac{4}{5}\qquad\mathrm{(E) \ } 1\qquad$

## Solution

For two numbers to have a difference that is a multiple of 5, the numbers must be congruent $\bmod{5}$ (their remainders after division by 5 must be the same). $0, 1, 2, 3, 4$ are the possible values of numbers in $\bmod{5}$. Since there are only 5 possible values in $\bmod{5}$ and we are picking $6$ numbers, by the Pigeonhole Principle, two of the numbers must be congruent $\bmod{5}$.

Therefore the probability that some pair of the 6 integers has a difference that is a multiple of 5 is $1 \Longrightarrow \boxed{\mathrm{E}}$.

## See also

 2006 AMC 10A (Problems • Answer Key • Resources) Preceded byProblem 19 Followed byProblem 21 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS