Difference between revisions of "2006 AMC 10A Problems/Problem 8"

(Problem)
(Solution)
Line 4: Line 4:
 
<math> \textbf{(A) } 2\qquad \textbf{(B) } 5\qquad \textbf{(C) } 7\qquad \textbf{(D) } 10\qquad \textbf{(E) } 11 </math>
 
<math> \textbf{(A) } 2\qquad \textbf{(B) } 5\qquad \textbf{(C) } 7\qquad \textbf{(D) } 10\qquad \textbf{(E) } 11 </math>
  
== Solution ==
+
== Solution 1 ==
 
 
=== Solution 1 ===
 
 
Substitute the points <math> (2,3) </math> and <math> (4,3) </math> into the given equation for <math> (x,y) </math>.
 
Substitute the points <math> (2,3) </math> and <math> (4,3) </math> into the given equation for <math> (x,y) </math>.
  
Line 25: Line 23:
 
<math>0=1+-12+c</math>
 
<math>0=1+-12+c</math>
  
<math>c=11 \Longrightarrow \mathrm{(E)}</math> is the answer.
+
<math>c=\boxed{\textbf{(E) }}</math>.
  
=== Solution 2 ===
+
=== Solution 1.1 ===
  
Alternatively, notice that since the equation is that of a conic parabola, the vertex is likely <math>(3,2)</math>. Thus, the form of the equation of the parabola is <math>y - 2 = (x - 3)^2</math>. Expanding this out, we find that <math>c = 11</math>.
+
Alternatively, notice that since the equation is that of a conic parabola, the vertex is likely <math>(3,2)</math>. Thus, the form of the equation of the parabola is <math>y - 2 = (x - 3)^2</math>. Expanding this out, we find that <math>c=\boxed{\textbf{(E) }}</math>.
  
=== Solution 3 ===
+
== Solution 2 ==
  
 
The points given have the same <math>y</math>-value, so the vertex lies on the line <math>x=\frac{2+4}{2}=3</math>.
 
The points given have the same <math>y</math>-value, so the vertex lies on the line <math>x=\frac{2+4}{2}=3</math>.
Line 55: Line 53:
 
<math>3=-8+c</math>
 
<math>3=-8+c</math>
  
<math>\boxed{ \text{(E) }c=11}</math>
+
<math>c=\boxed{\textbf{(E) }}</math>.
  
=== Solution 4 ===
+
== Solution 3 ==
 
Substituting y into the two equations, we get:
 
Substituting y into the two equations, we get:
  
Line 66: Line 64:
 
<math>x^2+bx+c-3=0</math>
 
<math>x^2+bx+c-3=0</math>
  
4, 2, are the solutions to the quadratic. Thus:
+
<math>4</math> and <math>2</math> are the solutions to the quadratic. Thus:
  
 
<math>c-3=4\times2</math>
 
<math>c-3=4\times2</math>

Revision as of 23:08, 16 December 2021

Problem

A parabola with equation $y=x^2+bx+c$ passes through the points $(2,3)$ and $(4,3)$. What is $c$?

$\textbf{(A) } 2\qquad \textbf{(B) } 5\qquad \textbf{(C) } 7\qquad \textbf{(D) } 10\qquad \textbf{(E) } 11$

Solution 1

Substitute the points $(2,3)$ and $(4,3)$ into the given equation for $(x,y)$.

Then we get a system of two equations:

$3=4+2b+c$

$3=16+4b+c$

Subtracting the first equation from the second we have:

$0=12+2b$

$b=-6$

Then using $b=-6$ in the first equation:

$0=1+-12+c$

$c=\boxed{\textbf{(E) }}$.

Solution 1.1

Alternatively, notice that since the equation is that of a conic parabola, the vertex is likely $(3,2)$. Thus, the form of the equation of the parabola is $y - 2 = (x - 3)^2$. Expanding this out, we find that $c=\boxed{\textbf{(E) }}$.

Solution 2

The points given have the same $y$-value, so the vertex lies on the line $x=\frac{2+4}{2}=3$.

The $x$-coordinate of the vertex is also equal to $\frac{-b}{2a}$, so set this equal to $3$ and solve for $b$, given that $a=1$:

$x=\frac{-b}{2a}$

$3=\frac{-b}{2}$

$6=-b$

$b=-6$

Now the equation is of the form $y=x^2-6x+c$. Now plug in the point $(2,3)$ and solve for $c$:

$y=x^2-6x+c$

$3=2^2-6(2)+c$

$3=4-12+c$

$3=-8+c$

$c=\boxed{\textbf{(E) }}$.

Solution 3

Substituting y into the two equations, we get:

$3=x^2+bx+c$

Which can be written as:

$x^2+bx+c-3=0$

$4$ and $2$ are the solutions to the quadratic. Thus:

$c-3=4\times2$

$c-3=8$

$c=11$

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png