Difference between revisions of "2006 AMC 10B Problems/Problem 11"

m (wikified and fixed grammer)
(Solution)
(10 intermediate revisions by 6 users not shown)
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
Since <math>10!</math> is [[divisibility | divisible]] by <math>100</math>, any [[factorial]] greater than <math>10!</math> is also divisible by <math>100</math>. The last two [[digit]]s of all factorials greater than <math>10!</math> are <math>00</math>, so the last two digits of <math>10!+11!+...+2006!</math> is <math>00</math>.
+
Since <math>10!</math> is [[divisibility | divisible]] by <math>100</math>, any [[factorial]] greater than <math>10!</math> is also divisible by <math>100</math>. The last two [[digit]]s of all factorials greater than <math>10!</math> are <math>00</math>, so the last two digits of <math>10!+11!+...+2006!</math> are <math>00</math>.  
 +
(*)
  
 
So all that is needed is the tens digit of the sum <math>7!+8!+9!</math>
 
So all that is needed is the tens digit of the sum <math>7!+8!+9!</math>
Line 12: Line 13:
  
 
So the tens digit is <math>4 \Rightarrow C</math>
 
So the tens digit is <math>4 \Rightarrow C</math>
 +
 +
(*) A slightly faster method would have to take the <math>\pmod {100}</math> residue of <math>7! + 8! + 9!.</math> Since <math>7! = 5040,</math> we can rewrite the sum as <cmath> 5040 + 8\cdot 5040 + 72\cdot 5040 \equiv 40 + 8\cdot 40 + 72\cdot 40 = 40 + 320 + 2880 \equiv 40 \pmod{100}. </cmath> Since the last two digits of the sum is <math>40</math>, the tens digit is <math>\fbox{4}.</math>
  
 
== See Also ==
 
== See Also ==
*[[2006 AMC 10B Problems]]
+
{{AMC10 box|year=2006|ab=B|num-b=10|num-a=12}}
 +
 
 +
[[Category:Introductory Number Theory Problems]]
 +
{{MAA Notice}}

Revision as of 07:12, 27 September 2020

Problem

What is the tens digit in the sum $7!+8!+9!+...+2006!$

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 9$

Solution

Since $10!$ is divisible by $100$, any factorial greater than $10!$ is also divisible by $100$. The last two digits of all factorials greater than $10!$ are $00$, so the last two digits of $10!+11!+...+2006!$ are $00$. (*)

So all that is needed is the tens digit of the sum $7!+8!+9!$

$7!+8!+9!=5040+40320+362880=408240$

So the tens digit is $4 \Rightarrow C$

(*) A slightly faster method would have to take the $\pmod {100}$ residue of $7! + 8! + 9!.$ Since $7! = 5040,$ we can rewrite the sum as \[5040 + 8\cdot 5040 + 72\cdot 5040 \equiv 40 + 8\cdot 40 + 72\cdot 40 = 40 + 320 + 2880 \equiv 40 \pmod{100}.\] Since the last two digits of the sum is $40$, the tens digit is $\fbox{4}.$

See Also

2006 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png