# Difference between revisions of "2006 AMC 12A Problems/Problem 17"

## Problem

An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.

Square $ABCD$ has side length $s$, a circle centered at $E$ has radius $r$, and $r$ and $s$ are both rational. The circle passes through $D$, and $D$ lies on $\overline{BE}$. Point $F$ lies on the circle, on the same side of $\overline{BE}$ as $A$. Segment $AF$ is tangent to the circle, and $AF=\sqrt{9+5\sqrt{2}}$. What is $r/s$?

$\mathrm{(A) \ } \frac{1}{2}\qquad \mathrm{(B) \ } \frac{5}{9}\qquad \mathrm{(C) \ } \frac{3}{5}\qquad \mathrm{(D) \ } \frac{5}{3}\qquad \mathrm{(E) \ } \frac{9}{5}$

## Solution

One possibility is to use the coordinate plane, setting $B$ at the origin. Point $A$ will be $(s, 0)$ and $E$ will be $\left(s + \frac{r}{\sqrt{2}},\ s + \frac{r}{\sqrt{2}}\right)$ since $B, D$, and $E$ are collinear and contain the diagonal of $ABCD$. The Pythagorean theorem results in

$$AF^2 + EF^2 = AE^2$$

$$r^2 + \left(\sqrt{9 + 5\sqrt{2}}\right)^2 = \left(\left(s + \frac{r}{\sqrt{2}}\right) - 0\right)^2 + \left(\left(s + \frac{r}{\sqrt{2}}\right) - s\right)^2$$

$$r^2 + 9 + 5\sqrt{2} = s^2 + rs\sqrt{2} + \frac{r^2}{2} + \frac{r^2}{2}$$

$$9 + 5\sqrt{2} = s^2 + rs\sqrt{2}$$

This implies that $rs = 5$ and $s^2 = 9$; dividing gives us $\frac{r}{s} = \frac{5}{9} \Rightarrow B$.

 2006 AMC 12A (Problems • Answer Key • Resources) Preceded byProblem 16 Followed byProblem 18 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions