Difference between revisions of "2006 AMC 12A Problems/Problem 18"

(Added solution)
m (Solution)
Line 16: Line 16:
 
<math>f(x)+f\left(\frac{1}{x}\right)=x</math>
 
<math>f(x)+f\left(\frac{1}{x}\right)=x</math>
  
Plugging in <math> \frac{1}{x} </math> into the function:  
+
Plugging in <math> \frac{1}{x} </math> into the [[function]]:  
  
 
<math>f\left(\frac{1}{x}\right)+f\left(\frac{1}{\frac{1}{x}}\right)=\frac{1}{x}</math>
 
<math>f\left(\frac{1}{x}\right)+f\left(\frac{1}{\frac{1}{x}}\right)=\frac{1}{x}</math>
Line 30: Line 30:
 
<math> x=\pm 1</math>
 
<math> x=\pm 1</math>
  
Therefore, the largest set of real numbers that can be in the domain of <math>f</math> is <math>\{-1,1\} \Rightarrow E </math>  
+
Therefore, the largest [[set]] of [[real number]]s that can be in the [[domain]] of <math>f</math> is <math>\{-1,1\} \Rightarrow E </math>
 +
 
 
== See also ==
 
== See also ==
 
* [[2006 AMC 12A Problems]]
 
* [[2006 AMC 12A Problems]]

Revision as of 15:33, 29 July 2006

Problem

The function $f$ has the property that for each real number $x$ in its domain, $1/x$ is also in its domain and

$f(x)+f\left(\frac{1}{x}\right)=x$

What is the largest set of real numbers that can be in the domain of $f$?

$\mathrm{(A) \ } \{x|x\ne 0\}\qquad \mathrm{(B) \ } \{x|x<0\}$

$\mathrm{(C) \ } \{x|x>0\}$$\mathrm{(D) \ } \{x|x\ne -1\;\rm{and}\; x\ne 0\;\rm{and}\; x\ne 1\}$

$\mathrm{(E) \ }  \{-1,1\}$

Solution

$f(x)+f\left(\frac{1}{x}\right)=x$

Plugging in $\frac{1}{x}$ into the function:

$f\left(\frac{1}{x}\right)+f\left(\frac{1}{\frac{1}{x}}\right)=\frac{1}{x}$

$f\left(\frac{1}{x}\right)+ f(x)= \frac{1}{x}$

Since $f(x) + f\left(\frac{1}{x}\right)$ cannot have two values:

$x = \frac{1}{x}$

$x^2 = 1$

$x=\pm 1$

Therefore, the largest set of real numbers that can be in the domain of $f$ is $\{-1,1\} \Rightarrow E$

See also