Difference between revisions of "2006 AMC 12A Problems/Problem 19"

(Solution: solution)
m (Solution: -{{sol}})
Line 8: Line 8:
  
 
== Solution ==
 
== Solution ==
{{solution}}
 
 
:''This solution needs a clearer explanation and a diagram.''
 
:''This solution needs a clearer explanation and a diagram.''
 
Notice that both [[circle]]s are [[tangent]] to the [[x-axis]] and each other. Call the circles (respectively) A and B; the [[distance]] between the two centers is <math>4 + 9 = 13</math>. If we draw the parallel radii that lead to the common [[external tangent]], a line can be extended parallel to the tangent from A to the radius of circle B. This creates a 5-12-13 triangle. To find the slope of that line (which is parallel to the tangent), note that another 5-12-13 triangle can be drawn below the first one such that the side with length 12 is parallel to the x-axis. The slope can be found by using the [[double tangent identity]],
 
Notice that both [[circle]]s are [[tangent]] to the [[x-axis]] and each other. Call the circles (respectively) A and B; the [[distance]] between the two centers is <math>4 + 9 = 13</math>. If we draw the parallel radii that lead to the common [[external tangent]], a line can be extended parallel to the tangent from A to the radius of circle B. This creates a 5-12-13 triangle. To find the slope of that line (which is parallel to the tangent), note that another 5-12-13 triangle can be drawn below the first one such that the side with length 12 is parallel to the x-axis. The slope can be found by using the [[double tangent identity]],
  
:<math>\tan (2 \tan ^{-1} (\frac{5}{12}) = \frac{\frac{5}{12} + \frac{5}{12}}{1 - \frac{5}{12}\frac{5}{12}}</math>
+
:<math>\tan (2 \tan ^{-1} \left(\frac{5}{12}\right) = \frac{\frac{5}{12} + \frac{5}{12}}{1 - \frac{5}{12}\frac{5}{12}}</math>
 
:<math>= \frac{120}{119}</math>
 
:<math>= \frac{120}{119}</math>
  

Revision as of 17:13, 29 September 2007

Problem


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Circles with centers $(2,4)$ and $(14,9)$ have radii $4$ and $9$, respectively. The equation of a common external tangent to the circles can be written in the form $y=mx+b$ with $m>0$. What is $b$?

$\mathrm{(A) \ } \frac{908}{199}\qquad \mathrm{(B) \ } \frac{909}{119}\qquad \mathrm{(C) \ } \frac{130}{17}\qquad \mathrm{(D) \ } \frac{911}{119}$$\mathrm{(E) \ }  \frac{912}{119}$

Solution

This solution needs a clearer explanation and a diagram.

Notice that both circles are tangent to the x-axis and each other. Call the circles (respectively) A and B; the distance between the two centers is $4 + 9 = 13$. If we draw the parallel radii that lead to the common external tangent, a line can be extended parallel to the tangent from A to the radius of circle B. This creates a 5-12-13 triangle. To find the slope of that line (which is parallel to the tangent), note that another 5-12-13 triangle can be drawn below the first one such that the side with length 12 is parallel to the x-axis. The slope can be found by using the double tangent identity,

$\tan (2 \tan ^{-1} \left(\frac{5}{12}\right) = \frac{\frac{5}{12} + \frac{5}{12}}{1 - \frac{5}{12}\frac{5}{12}}$
$= \frac{120}{119}$

To find the x and y coordinates of the point of tangency of circle A, we can set up a ratio (the slope will be –119/120 because it is the negative reciprocal):

$\frac{119}{\sqrt{119^2 + 120^2}}$ $=$ $\frac{119}{169} = \frac{y - 4}{4}$
$\frac{-120}{\sqrt{119^2 + 120^2}} = \frac{-120}{169} = \frac{x - 2}{4}$
$x = \frac{-142}{169}, y = \frac{1152}{169}$

We can plug this into the equation of the line for the tangent to get:

$\frac{1152}{169} =  \frac{120}{119}\frac{-142}{169} + b$
$b = \frac{912}{119}$ $\Rightarrow \mathrm{E}$

See also

2006 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions