Difference between revisions of "2006 AMC 12B Problems/Problem 1"

(Solution)
m (Problem)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
What is <math>( - 1)^1 + ( - 1)^2 + \cdots + ( - 1)^{2006}</math>?
 +
 +
<math>
 +
\text {(A) } - 2006 \qquad \text {(B) } - 1 \qquad \text {(C) } 0 \qquad \text {(D) } 1 \qquad \text {(E) } 2006
 +
</math>
  
 
== Solution ==
 
== Solution ==
The answer was C, 0.
+
<math>(-1)^n=1</math> if n is even and <math>-1</math> if n is odd. So we have
  
For a full list of answers, go to this site.
+
<math>-1+1-1+1-\cdots-1+1=0+0+\cdots+0+0=0 \Rightarrow \text{(C)}</math>
[[http://www.unl.edu/amc/e-exams/e6-amc12/e6-1-12archive/2006-12a/06AMC12AB-answers.html]]
 
  
 
== See also ==
 
== See also ==
* [[2006 AMC 12B Problems]]
+
{{AMC12 box|year=2006|ab=B|before=First Question|num-a=2}}
 +
{{MAA Notice}}

Latest revision as of 10:40, 15 September 2017

Problem

What is $( - 1)^1 + ( - 1)^2 + \cdots + ( - 1)^{2006}$?

$\text {(A) } - 2006 \qquad \text {(B) } - 1 \qquad \text {(C) } 0 \qquad \text {(D) } 1 \qquad \text {(E) } 2006$

Solution

$(-1)^n=1$ if n is even and $-1$ if n is odd. So we have

$-1+1-1+1-\cdots-1+1=0+0+\cdots+0+0=0 \Rightarrow \text{(C)}$

See also

2006 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS