Difference between revisions of "2006 AMC 12B Problems/Problem 16"

(Solution)
(Solution)
Line 17: Line 17:
  
 
== Solution ==
 
== Solution ==
http://www.unl.edu/amc/mathclub/5-0,problems/H-problems/H-pdfs/2006/HB2006-16.pdf
+
To find the area of the regular hexagon, we only need to calculate the side length.
 +
 
 +
Drawing in points <math>A</math>, <math>B</math>, and <math>C</math>, and connecting <math>A</math> and <math>C</math> with an auxiliary line, we see two 30-60-90 triangles are formed.
 +
 
 +
Points <math>A</math> and <math>C</math> are a distance of <math>\sqrt{7^2+1^2} = \sqrt{50} = 5\sqrt{2}</math> apart.  Half of this distance is the length of the longer leg of the right triangles.  Therefore, the side length of the hexagon is <math>\frac{5\sqrt{2}}{2}\cdot\frac{1}{\sqrt{3}}\cdot2 = \frac{5\sqrt{6}}{3}</math>.
 +
 
 +
The apothem is thus <math>\frac{1}{2}\cdot\frac{5\sqrt{6}}{3}\cdot\sqrt{3} = \frac{5\sqrt{2}}{2}</math>, yielding an area of <math>\frac{1}{2}\cdot10\sqrt{6}\cdot\frac{5\sqrt{2}}{2}=25\sqrt{3}</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2006|ab=B|num-b=15|num-a=17}}
 
{{AMC12 box|year=2006|ab=B|num-b=15|num-a=17}}

Revision as of 14:46, 11 August 2012

This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.

Problem

Regular hexagon $ABCDEF$ has vertices $A$ and $C$ at $(0,0)$ and $(7,1)$, respectively. What is its area?

$\mathrm{(A)}\ 20\sqrt {3} \qquad \mathrm{(B)}\ 22\sqrt {3} \qquad \mathrm{(C)}\ 25\sqrt {3} \qquad \mathrm{(D)}\ 27\sqrt {3} \qquad \mathrm{(E)}\ 50$

Solution

To find the area of the regular hexagon, we only need to calculate the side length.

Drawing in points $A$, $B$, and $C$, and connecting $A$ and $C$ with an auxiliary line, we see two 30-60-90 triangles are formed.

Points $A$ and $C$ are a distance of $\sqrt{7^2+1^2} = \sqrt{50} = 5\sqrt{2}$ apart. Half of this distance is the length of the longer leg of the right triangles. Therefore, the side length of the hexagon is $\frac{5\sqrt{2}}{2}\cdot\frac{1}{\sqrt{3}}\cdot2 = \frac{5\sqrt{6}}{3}$.

The apothem is thus $\frac{1}{2}\cdot\frac{5\sqrt{6}}{3}\cdot\sqrt{3} = \frac{5\sqrt{2}}{2}$, yielding an area of $\frac{1}{2}\cdot10\sqrt{6}\cdot\frac{5\sqrt{2}}{2}=25\sqrt{3}$.

See also

2006 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions