Difference between revisions of "2007 AIME I Problems/Problem 5"

m (Box the solution)
(3 intermediate revisions by 2 users not shown)
Line 14: Line 14:
 
Generalizing this, we define that <math>9x + k = F - 32</math>. Thus, <math>F = \left[\frac{9}{5}\left[\frac{5}{9}(9x + k)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x + \left[\frac{5}{9}k\right]) + 32\right] \Longrightarrow F = \left[\frac{9}{5} \left[\frac{5}{9}k \right] \right] + 9x + 32</math>. We need to find all values <math>0 \le k \le 8</math> that <math>\left[ \frac{9}{5} \left[ \frac{5}{9} k \right] \right] = k</math>. Testing every value of <math>k</math> shows that <math>k = 0, 2, 4, 5, 7</math>, so <math>5</math> of every <math>9</math> values of <math>k</math> work.
 
Generalizing this, we define that <math>9x + k = F - 32</math>. Thus, <math>F = \left[\frac{9}{5}\left[\frac{5}{9}(9x + k)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x + \left[\frac{5}{9}k\right]) + 32\right] \Longrightarrow F = \left[\frac{9}{5} \left[\frac{5}{9}k \right] \right] + 9x + 32</math>. We need to find all values <math>0 \le k \le 8</math> that <math>\left[ \frac{9}{5} \left[ \frac{5}{9} k \right] \right] = k</math>. Testing every value of <math>k</math> shows that <math>k = 0, 2, 4, 5, 7</math>, so <math>5</math> of every <math>9</math> values of <math>k</math> work.
  
There are <math>\lfloor \frac{1000 - 32}{9} \rfloor = 107</math> cycles of <math>9</math>, giving <math>5 \cdot 107 = 535</math> numbers that work. Of the remaining <math>6</math> numbers from <math>995</math> onwards, <math>995,\ 997,\ 999,\ 1000</math> work, giving us <math>535 + 4 = 539</math> as the solution.
+
There are <math>\lfloor \frac{1000 - 32}{9} \rfloor = 107</math> cycles of <math>9</math>, giving <math>5 \cdot 107 = 535</math> numbers that work. Of the remaining <math>6</math> numbers from <math>995</math> onwards, <math>995,\ 997,\ 999,\ 1000</math> work, giving us <math>535 + 4 = \boxed{539}</math> as the solution.
  
 
=== Solution 2 ===
 
=== Solution 2 ===
Line 21: Line 21:
  
 
=== Solution 3 ===
 
=== Solution 3 ===
Let <math>c</math> be a degree Celsius, and <math>f=\frac 95c+32</math> rounded to the nearest integer. <math>|f-((\frac 95)c+32)|\leq 1/2</math> and <math>|(\frac 59)(f-32)-c|\leq \frac 5{18}</math> so it must round to <math>c</math> because <math>\frac 5{18}<\frac 12</math>. Therefore there is one solution per degree celcius in the range from <math>0</math> to <math>(\frac 59)(1000-32) + 1=(\frac 59)(968) + 1=538.8</math>, meaning there are <math>539</math> solutions.
+
Let <math>c</math> be a degree Celsius, and <math>f=\frac 95c+32</math> rounded to the nearest integer. Since <math>f</math> was rounded to the nearest integer we have <math>|f-((\frac 95)c+32)|\leq 1/2</math>, which is equivalent to <math>|(\frac 59)(f-32)-c|\leq \frac 5{18}</math> if we multiply by <math>5/9</math>. Therefore, it must round to <math>c</math> because <math>\frac 5{18}<\frac 12</math> so <math>c</math> is the closest integer. Therefore there is one solution per degree celcius in the range from <math>0</math> to <math>(\frac 59)(1000-32) + 1=(\frac 59)(968) + 1=538.8</math>, meaning there are <math>539</math> solutions.
 +
 
 +
=== Solution 4 ===
 +
Start listing out values for <math>F</math> and their corresponding values of <math>C</math>. You will soon find that every 9 values starting from <math>F</math> = 32, there is a pattern:
 +
 
 +
Works
 +
 
 +
Works
 +
 
 +
Doesn’t work
 +
 
 +
Doesn’t work
 +
 
 +
Works
 +
 
 +
Works
 +
 
 +
Doesn’t work
 +
 
 +
Works
 +
 
 +
Doesn’t work
 +
 
 +
Works
 +
 
 +
There are 969 numbers between 32 and 1000, inclusive. This is 107 sets of 9, plus 6 extra numbers at the end. In each set of 9, there are 5 “Works,” so we have <math>107\cdot5 = 535</math> values of <math>F</math> that work.
 +
 
 +
Now we must add the 6 extra numbers. The number of “Works” in the first 6 terms of the pattern is 4, so our final answer is <math>535 + 4 = 539</math> solutions that work.
 +
 
 +
Submitted by warriorcats
  
 
== See also ==
 
== See also ==

Revision as of 16:32, 29 February 2020

Problem

The formula for converting a Fahrenheit temperature $F$ to the corresponding Celsius temperature $C$ is $C = \frac{5}{9}(F-32).$ An integer Fahrenheit temperature is converted to Celsius, rounded to the nearest integer, converted back to Fahrenheit, and again rounded to the nearest integer.

For how many integer Fahrenheit temperatures between 32 and 1000 inclusive does the original temperature equal the final temperature?

Solution

Solution 1

Examine $F - 32$ modulo 9.

  • If $F - 32 \equiv 0 \pmod{9}$, then we can define $9x = F - 32$. This shows that $F = \left[\frac{9}{5}\left[\frac{5}{9}(F-32)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x) + 32\right] \Longrightarrow F = 9x + 32$. This case works.
  • If $F - 32 \equiv 1 \pmod{9}$, then we can define $9x + 1 = F - 32$. This shows that $F = \left[\frac{9}{5}\left[\frac{5}{9}(F-32)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x + 1) + 32\right] \Longrightarrow$$F = \left[9x + \frac{9}{5}+ 32 \right] \Longrightarrow F = 9x + 34$. So this case doesn't work.

Generalizing this, we define that $9x + k = F - 32$. Thus, $F = \left[\frac{9}{5}\left[\frac{5}{9}(9x + k)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x + \left[\frac{5}{9}k\right]) + 32\right] \Longrightarrow F = \left[\frac{9}{5} \left[\frac{5}{9}k \right] \right] + 9x + 32$. We need to find all values $0 \le k \le 8$ that $\left[ \frac{9}{5} \left[ \frac{5}{9} k \right] \right] = k$. Testing every value of $k$ shows that $k = 0, 2, 4, 5, 7$, so $5$ of every $9$ values of $k$ work.

There are $\lfloor \frac{1000 - 32}{9} \rfloor = 107$ cycles of $9$, giving $5 \cdot 107 = 535$ numbers that work. Of the remaining $6$ numbers from $995$ onwards, $995,\ 997,\ 999,\ 1000$ work, giving us $535 + 4 = \boxed{539}$ as the solution.

Solution 2

Notice that $\left[ \frac{9}{5} \left[ \frac{5}{9} k \right] \right] = k$ holds if $k=\left[ \frac{9}{5}x\right]$ for some $x$. Thus, after translating from $F\to F-32$ we want count how many values of $x$ there are such that $k=\left[ \frac{9}{5}x\right]$ is an integer from $0$ to $968$. This value is computed as $\left[968*\frac{5}{9}\right]+1$, adding in the extra solution corresponding to $0$.

Solution 3

Let $c$ be a degree Celsius, and $f=\frac 95c+32$ rounded to the nearest integer. Since $f$ was rounded to the nearest integer we have $|f-((\frac 95)c+32)|\leq 1/2$, which is equivalent to $|(\frac 59)(f-32)-c|\leq \frac 5{18}$ if we multiply by $5/9$. Therefore, it must round to $c$ because $\frac 5{18}<\frac 12$ so $c$ is the closest integer. Therefore there is one solution per degree celcius in the range from $0$ to $(\frac 59)(1000-32) + 1=(\frac 59)(968) + 1=538.8$, meaning there are $539$ solutions.

Solution 4

Start listing out values for $F$ and their corresponding values of $C$. You will soon find that every 9 values starting from $F$ = 32, there is a pattern:

Works

Works

Doesn’t work

Doesn’t work

Works

Works

Doesn’t work

Works

Doesn’t work

Works

There are 969 numbers between 32 and 1000, inclusive. This is 107 sets of 9, plus 6 extra numbers at the end. In each set of 9, there are 5 “Works,” so we have $107\cdot5 = 535$ values of $F$ that work.

Now we must add the 6 extra numbers. The number of “Works” in the first 6 terms of the pattern is 4, so our final answer is $535 + 4 = 539$ solutions that work.

Submitted by warriorcats

See also

2007 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png