Difference between revisions of "2007 AIME I Problems/Problem 5"

(Solution 2)
(complete solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
The formula for converting a Fahrenheit temperature <math>F</math> to the corresponding Celsius temperature <math>C</math> is <math>C = \frac{5}{9}(F-32).</math>  An integer Fahrenheit temperature is converted to Celsius, rounded to the nearest integer, converted back to Fahrenheit, and again rounded to the nearest integer.
+
The formula for converting a Fahrenheit temperature <math>F</math> to the corresponding Celsius temperature <math>C</math> is <math>C = \frac{5}{9}(F-32).</math>  An integer Fahrenheit temperature is converted to Celsius, rounded to the nearest integer, converted back to Fahrenheit, and again rounded to the nearest [[integer]].
  
 
For how many integer Fahrenheit temperatures between 32 and 1000 inclusive does the original temperature equal the final temperature?
 
For how many integer Fahrenheit temperatures between 32 and 1000 inclusive does the original temperature equal the final temperature?
  
 +
__TOC__
 
== Solution ==
 
== Solution ==
 +
=== Solution 1 ===
 
Examine <math>F - 32</math> modulo 9.
 
Examine <math>F - 32</math> modulo 9.
== Solution 2 ==
+
 
 +
*If <math>\displaystyle F - 32 \equiv 0 \pmod{9}</math>, then we can define <math>9x = F - 32</math>. This shows that <math>F = \left[\frac{9}{5}\left[\frac{5}{9}(F-32)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x) + 32\right] \Longrightarrow F = 9x + 32</math>. This case works.
 +
* If <math>\displaystyle F - 32 \equiv 1 \pmod{9}</math>, then we can define <math>9x + 1 = F - 32</math>. This shows that <math>F = \left[\frac{9}{5}\left[\frac{5}{9}(F-32)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x + 1) + 32\right] \Longrightarrow F = \left[9x + \frac{9}{5}+ 32 \right] \Longrightarrow F = 9x + 34</math>. So this case doesn't work.
 +
 
 +
Generalizing this, we define that <math>9x + k = F - 32</math>. Thus, <math>F = \left[\frac{9}{5}\left[\frac{5}{9}(9x + k)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x + \left[\frac{5}{9}k\right]) + 32\right] \Longrightarrow F = \left[\frac{9}{5} \left[\frac{9}{5}k \right] \right] + 9x + 32</math>. We need to find all values <math>\displaystyle 0 \le k \le 8</math> that <math>\left[ \frac{9}{5} \left[ \frac{5}{9} k \right] \right] = k</math>. Testing every value of <math>k</math> shows that <math>k = 0, 2, 4, 5, 7</math>, so <math>5</math> of every <math>9</math> values of <math>k</math> work.
 +
 
 +
There are <math>\lfloor \frac{1000 - 32}{9} \rfloor = 107</math> cycles of <math>9</math>, giving <math>5 \cdot 107 = 535</math> numbers that work. Of the remaining <math>6</math> numbers from <math>995</math> onwards, <math>995,\ 997,\ 999,\ 1000</math> work, giving us <math>535 + 4 = 539</math> as the solution.
 +
 
 +
 
 +
=== Solution 2 ===
 
Hint. Consider the identity <math>Round(ax)=Round(xRound(a/Round(ax))</math> its something like that...
 
Hint. Consider the identity <math>Round(ax)=Round(xRound(a/Round(ax))</math> its something like that...
 
== Solution 3 ==
 
== Solution 3 ==

Revision as of 19:41, 15 March 2007

Problem

The formula for converting a Fahrenheit temperature $F$ to the corresponding Celsius temperature $C$ is $C = \frac{5}{9}(F-32).$ An integer Fahrenheit temperature is converted to Celsius, rounded to the nearest integer, converted back to Fahrenheit, and again rounded to the nearest integer.

For how many integer Fahrenheit temperatures between 32 and 1000 inclusive does the original temperature equal the final temperature?

Solution

Solution 1

Examine $F - 32$ modulo 9.

  • If $\displaystyle F - 32 \equiv 0 \pmod{9}$, then we can define $9x = F - 32$. This shows that $F = \left[\frac{9}{5}\left[\frac{5}{9}(F-32)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x) + 32\right] \Longrightarrow F = 9x + 32$. This case works.
  • If $\displaystyle F - 32 \equiv 1 \pmod{9}$, then we can define $9x + 1 = F - 32$. This shows that $F = \left[\frac{9}{5}\left[\frac{5}{9}(F-32)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x + 1) + 32\right] \Longrightarrow F = \left[9x + \frac{9}{5}+ 32 \right] \Longrightarrow F = 9x + 34$. So this case doesn't work.

Generalizing this, we define that $9x + k = F - 32$. Thus, $F = \left[\frac{9}{5}\left[\frac{5}{9}(9x + k)\right] + 32\right] \Longrightarrow F = \left[\frac{9}{5}(5x + \left[\frac{5}{9}k\right]) + 32\right] \Longrightarrow F = \left[\frac{9}{5} \left[\frac{9}{5}k \right] \right] + 9x + 32$. We need to find all values $\displaystyle 0 \le k \le 8$ that $\left[ \frac{9}{5} \left[ \frac{5}{9} k \right] \right] = k$. Testing every value of $k$ shows that $k = 0, 2, 4, 5, 7$, so $5$ of every $9$ values of $k$ work.

There are $\lfloor \frac{1000 - 32}{9} \rfloor = 107$ cycles of $9$, giving $5 \cdot 107 = 535$ numbers that work. Of the remaining $6$ numbers from $995$ onwards, $995,\ 997,\ 999,\ 1000$ work, giving us $535 + 4 = 539$ as the solution.


Solution 2

Hint. Consider the identity $Round(ax)=Round(xRound(a/Round(ax))$ its something like that...

Solution 3

A full solution:

Let $c$ be a degree celcius, and $f=(9/5)c+32$ rounded to the nearest integer. $|f-((9/5)c+32)|\leq 1/2$ $|(5/9)(f-32)-c|\leq 5/18$ so it must round to $c$ because $5/18<1/2$. Therefore there is one solution per degree celcius in the range from $0$ to $(5/9)(1000-32)=(5/9)(968)=537.8$, meaning there are $538$ solutions.

See also

2007 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions