GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2007 AMC 10A Problems"

m (..)
m
(48 intermediate revisions by 14 users not shown)
Line 1: Line 1:
 +
{{AMC10 Problems|year=2007|ab=A}}
 
== Problem 1 ==
 
== Problem 1 ==
 +
One ticket to a show costs <math>\$20</math> at full price. Susan buys 4 tickets using a coupon that gives her a <math>25\%</math> discount. Pam buys 5 tickets using a coupon that gives her a <math>30\%</math> discount. How many more dollars does Pam pay than Susan?
 +
 +
<math>\mathrm{(A)}\ 2\qquad \mathrm{(B)}\ 5\qquad \mathrm{(C)}\ 10\qquad \mathrm{(D)}\ 15\qquad \mathrm{(E)}\ 20</math>
  
 
[[2007 AMC 10A Problems/Problem 1|Solution]]
 
[[2007 AMC 10A Problems/Problem 1|Solution]]
  
 
== Problem 2 ==
 
== Problem 2 ==
 +
Define <math>a@b = ab - b^{2}</math> and <math>a\#b = a + b - ab^{2}</math>. What is <math>\frac {6@2}{6\#2}</math>?
 +
 +
<math>\text{(A)}\ - \frac {1}{2}\qquad \text{(B)}\ - \frac {1}{4}\qquad \text{(C)}\ \frac {1}{8}\qquad \text{(D)}\ \frac {1}{4}\qquad \text{(E)}\ \frac {1}{2}</math>
  
 
[[2007 AMC 10A Problems/Problem 2|Solution]]
 
[[2007 AMC 10A Problems/Problem 2|Solution]]
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
An aquarium has a rectangular base that measures 100 cm by 40 cm and has a height of 50 cm. It is filled with water to a height of 40 cm. A brick with a rectangular base that measures 40 cm by 20 cm and a height of 10 cm is placed in the aquarium. By how many centimeters does the water rise?
 +
 +
<math>\text{(A)}\ 0.5 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 1.5 \qquad \text{(D)}\ 2 \qquad \text{(E)}\ 2.5</math>
  
 
[[2007 AMC 10A Problems/Problem 3|Solution]]
 
[[2007 AMC 10A Problems/Problem 3|Solution]]
  
 
== Problem 4 ==
 
== Problem 4 ==
 +
The larger of two consecutive odd integers is three times the smaller. What is their sum?
 +
 +
<math>\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20</math>
  
 
[[2007 AMC 10A Problems/Problem 4|Solution]]
 
[[2007 AMC 10A Problems/Problem 4|Solution]]
  
 
== Problem 5 ==
 
== Problem 5 ==
 +
A school store sells 7 pencils and 8 notebooks for <math>\$4.15</math>. It also sells 5 pencils and 3 notebooks for <math>\$1.77</math>. How much do 16 pencils and 10 notebooks cost?
 +
 +
<math>\text{(A)}\ \$1.76 \qquad \text{(B)}\ \$5.84 \qquad \text{(C)}\ \$6.00 \qquad \text{(D)}\ \$6.16 \qquad \text{(E)}\ \$6.32</math>
  
 
[[2007 AMC 10A Problems/Problem 5|Solution]]
 
[[2007 AMC 10A Problems/Problem 5|Solution]]
  
 
== Problem 6 ==
 
== Problem 6 ==
 +
At Euclid High School, the number of students taking the AMC 10 was <math>60</math> in 2002, <math>66</math> in 2003, <math>70</math> in 2004, <math>76</math> in 2005, <math>78</math> in 2006, and is <math>85</math> in 2007. Between what two consecutive years was there the largest percentage increase?
 +
 +
<math>\text{(A)}\ 2002\ \text{and}\ 2003 \qquad \text{(B)}\ 2003\ \text{and}\ 2004 \qquad \text{(C)}\ 2004\ \text{and}\ 2005 \qquad \text{(D)}\ 2005\ \text{and}\ 2006 \qquad \text{(E)}\ 2006\ \text{and}\ 2007</math>
  
 
[[2007 AMC 10A Problems/Problem 6|Solution]]
 
[[2007 AMC 10A Problems/Problem 6|Solution]]
  
 
== Problem 7 ==
 
== Problem 7 ==
 +
Last year Mr. Jon Q. Public received an inheritance. He paid <math>20\%</math> in federal taxes on the inheritance, and paid <math>10\%</math> of what he had left in state taxes. He paid a total of <math>10500</math> for both taxes. How many dollars was his inheritance?
 +
 +
<math>(\mathrm {A})\ 30000 \qquad (\mathrm {B})\ 32500 \qquad(\mathrm {C})\ 35000 \qquad(\mathrm {D})\ 37500 \qquad(\mathrm {E})\ 40000</math>
  
 
[[2007 AMC 10A Problems/Problem 7|Solution]]
 
[[2007 AMC 10A Problems/Problem 7|Solution]]
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
Triangles <math>ABC</math> and <math>ADC</math> are isosceles with <math>AB=BC</math> and <math>AD=DC</math>. Point <math>D</math> is inside triangle <math>ABC</math>, angle <math>ABC</math> measures 40 degrees, and angle <math>ADC</math> measures 140 degrees. What is the degree measure of angle <math>BAD</math>?
 +
 +
<math>\mathrm{(A)}\ 20\qquad \mathrm{(B)}\ 30\qquad \mathrm{(C)}\ 40\qquad \mathrm{(D)}\ 50\qquad \mathrm{(E)}\ 60</math>
  
 
[[2007 AMC 10A Problems/Problem 8|Solution]]
 
[[2007 AMC 10A Problems/Problem 8|Solution]]
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
Real numbers <math>a</math> and <math>b</math> satisfy the equations <math>3^{a} = 81^{b + 2}</math> and <math>125^{b} = 5^{a - 3}</math>. What is <math>ab</math>?
 +
 +
<math>\text{(A)}\ -60 \qquad \text{(B)}\ -17 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 60</math>
  
 
[[2007 AMC 10A Problems/Problem 9|Solution]]
 
[[2007 AMC 10A Problems/Problem 9|Solution]]
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
The Dunbar family consists of a mother, a father, and some children. The average age of the members of the family is <math>20</math>, the father is <math>48</math> years old, and the average age of the mother and children is <math>16</math>. How many children are in the family?
 +
 +
<math>\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 6</math>
  
 
[[2007 AMC 10A Problems/Problem 10|Solution]]
 
[[2007 AMC 10A Problems/Problem 10|Solution]]
  
 
== Problem 11 ==
 
== Problem 11 ==
 +
The numbers from <math>1</math> to <math>8</math> are placed at the vertices of a cube in such a manner that the sum of the four numbers on each face is the same. What is this common sum?
 +
 +
<math>\text{(A)}\ 14 \qquad \text{(B)}\ 16 \qquad \text{(C)}\ 18 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 24</math>
  
 
[[2007 AMC 10A Problems/Problem 11|Solution]]
 
[[2007 AMC 10A Problems/Problem 11|Solution]]
  
 
== Problem 12 ==
 
== Problem 12 ==
 +
Two tour guides are leading six tourists. The guides decide to split up. Each tourist must choose one of the guides, but with the stipulation that each guide must take at least one tourist. How many different groupings of guides and tourists are possible?
 +
 +
<math>\text{(A)}\ 56 \qquad \text{(B)}\ 58 \qquad \text{(C)}\ 60 \qquad \text{(D)}\ 62 \qquad \text{(E)}\ 64</math>
  
 
[[2007 AMC 10A Problems/Problem 12|Solution]]
 
[[2007 AMC 10A Problems/Problem 12|Solution]]
  
 
== Problem 13 ==
 
== Problem 13 ==
 +
Yan is somewhere between his home and the stadium. To get to the stadium he can walk directly to the stadium, or else he can walk home and then ride his bicycle to the stadium. He rides 7 times as fast as he walks, and both choices require the same amount of time. What is the ratio of Yan's distance from his home to his distance from the stadium?
 +
 +
<math>\mathrm{(A)}\ \frac 23\qquad \mathrm{(B)}\ \frac 34\qquad \mathrm{(C)}\ \frac 45\qquad \mathrm{(D)}\ \frac 56\qquad \mathrm{(E)}\ \frac 78</math>
  
 
[[2007 AMC 10A Problems/Problem 13|Solution]]
 
[[2007 AMC 10A Problems/Problem 13|Solution]]
  
 
== Problem 14 ==
 
== Problem 14 ==
 +
A triangle with side lengths in the ratio <math>3 : 4 : 5</math> is inscribed in a circle with radius <math>3</math>. What is the area of the triangle?
 +
 +
<math>\mathrm{(A)}\ 8.64\qquad \mathrm{(B)}\ 12\qquad \mathrm{(C)}\ 5\pi\qquad \mathrm{(D)}\ 17.28\qquad \mathrm{(E)}\ 18</math>
  
 
[[2007 AMC 10A Problems/Problem 14|Solution]]
 
[[2007 AMC 10A Problems/Problem 14|Solution]]
  
 
== Problem 15 ==
 
== Problem 15 ==
 +
Four circles of radius <math>1</math> are each tangent to two sides of a square and externally tangent to a circle of radius <math>2</math>, as shown. What is the area of the square?
 +
<center>
 +
<asy>
 +
unitsize(5mm);
 +
defaultpen(linewidth(.8pt)+fontsize(8pt));
 +
real h=3*sqrt(2)/2;
 +
pair O0=(0,0), O1=(h,h), O2=(-h,h), O3=(-h,-h), O4=(h,-h);
 +
pair X=O0+2*dir(30), Y=O2+dir(45);
 +
draw((-h-1,-h-1)--(-h-1,h+1)--(h+1,h+1)--(h+1,-h-1)--cycle);
 +
draw(Circle(O0,2));
 +
draw(Circle(O1,1));
 +
draw(Circle(O2,1));
 +
draw(Circle(O3,1));
 +
draw(Circle(O4,1));
 +
draw(O0--X);
 +
draw(O2--Y);
 +
label("$2$",midpoint(O0--X),NW);
 +
label("$1$",midpoint(O2--Y),SE);
 +
</asy>
 +
</center>
 +
<math>\text{(A)}\ 32 \qquad \text{(B)}\ 22 + 12\sqrt {2}\qquad \text{(C)}\ 16 + 16\sqrt {3}\qquad \text{(D)}\ 48 \qquad \text{(E)}\ 36 + 16\sqrt {2}</math>
  
 
[[2007 AMC 10A Problems/Problem 15|Solution]]
 
[[2007 AMC 10A Problems/Problem 15|Solution]]
  
 
== Problem 16 ==
 
== Problem 16 ==
 +
Integers <math>a, b, c,</math> and <math>d</math>, not necessarily distinct, are chosen independently and at random from 0 to 2007, inclusive. What is the probability that <math>ad-bc</math> is even?
 +
 +
<math>\mathrm{(A)}\ \frac 38\qquad \mathrm{(B)}\ \frac 7{16}\qquad \mathrm{(C)}\ \frac 12\qquad \mathrm{(D)}\ \frac 9{16}\qquad \mathrm{(E)}\ \frac 58</math>
  
 
[[2007 AMC 10A Problems/Problem 16|Solution]]
 
[[2007 AMC 10A Problems/Problem 16|Solution]]
  
 
== Problem 17 ==
 
== Problem 17 ==
 +
Suppose that <math>m</math> and <math>n</math> are positive integers such that <math>75m = n^{3}</math>. What is the minimum possible value of <math>m + n</math>?
 +
 +
<math>\text{(A)}\ 15 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 5700</math>
  
 
[[2007 AMC 10A Problems/Problem 17|Solution]]
 
[[2007 AMC 10A Problems/Problem 17|Solution]]
  
 
== Problem 18 ==
 
== Problem 18 ==
 +
Consider the <math>12</math>-sided polygon <math>ABCDEFGHIJKL</math>, as shown. Each of its sides has length <math>4</math>, and each two consecutive sides form a right angle. Suppose that <math>\overline{AG}</math> and <math>\overline{CH}</math> meet at <math>M</math>. What is the area of quadrilateral <math>ABCM</math>?
 +
<center>
 +
<asy>
 +
unitsize(13mm);
 +
defaultpen(linewidth(.8pt)+fontsize(10pt));
 +
dotfactor=4;
 +
pair A=(1,3), B=(2,3), C=(2,2), D=(3,2), Ep=(3,1), F=(2,1), G=(2,0), H=(1,0), I=(1,1), J=(0,1), K=(0,2), L=(1,2);
 +
pair M=intersectionpoints(A--G,H--C)[0];
 +
draw(A--B--C--D--Ep--F--G--H--I--J--K--L--cycle);
 +
draw(A--G);
 +
draw(H--C);
 +
dot(M);
 +
label("$A$",A,NW);
 +
label("$B$",B,NE);
 +
label("$C$",C,NE);
 +
label("$D$",D,NE);
 +
label("$E$",Ep,SE);
 +
label("$F$",F,SE);
 +
label("$G$",G,SE);
 +
label("$H$",H,SW);
 +
label("$I$",I,SW);
 +
label("$J$",J,SW);
 +
label("$K$",K,NW);
 +
label("$L$",L,NW);
 +
label("$M$",M,W);
 +
</asy>
 +
</center>
 +
<math>\text{(A)}\ \frac {44}{3}\qquad \text{(B)}\ 16 \qquad \text{(C)}\ \frac {88}{5}\qquad \text{(D)}\ 20 \qquad \text{(E)}\ \frac {62}{3}</math>
  
 
[[2007 AMC 10A Problems/Problem 18|Solution]]
 
[[2007 AMC 10A Problems/Problem 18|Solution]]
  
 
== Problem 19 ==
 
== Problem 19 ==
 +
A paint brush is swept along both diagonals of a square to produce the symmetric painted area, as shown. Half the area of the square is painted. What is the ratio of the side length of the square to the brush width?
 +
<center>
 +
<asy>
 +
unitsize(15mm);
 +
defaultpen(linewidth(.8pt));
 +
path P=(-sqrt(2)/2,1)--(0,1-sqrt(2)/2)--(sqrt(2)/2,1);
 +
path Pc=(-sqrt(2)/2,1)--(0,1-sqrt(2)/2)--(sqrt(2)/2,1)--cycle;
 +
path S=(-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle;
 +
fill(S,gray);
 +
for(int i=0;i<4;++i)
 +
{
 +
fill(rotate(90*i)*Pc,white);
 +
draw(rotate(90*i)*P);
 +
}
 +
draw(S);
 +
</asy>
 +
</center>
 +
<math>\text{(A)}\ 2\sqrt {2} + 1 \qquad \text{(B)}\ 3\sqrt {2}\qquad \text{(C)}\ 2\sqrt {2} + 2 \qquad \text{(D)}\ 3\sqrt {2} + 1 \qquad \text{(E)}\ 3\sqrt {2} + 2</math>
  
 
[[2007 AMC 10A Problems/Problem 19|Solution]]
 
[[2007 AMC 10A Problems/Problem 19|Solution]]
  
 
== Problem 20 ==
 
== Problem 20 ==
 +
Suppose that the number <math>a</math> satisfies the equation <math>4 = a + a^{ - 1}</math>. What is the value of <math>a^{4} + a^{ - 4}</math>?
 +
 +
<math>\text{(A)}\ 164 \qquad \text{(B)}\ 172 \qquad \text{(C)}\ 192 \qquad \text{(D)}\ 194 \qquad \text{(E)}\ 212</math>
  
 
[[2007 AMC 10A Problems/Problem 20|Solution]]
 
[[2007 AMC 10A Problems/Problem 20|Solution]]
Line 87: Line 206:
  
 
== Problem 22 ==
 
== Problem 22 ==
 +
A finite sequence of three-digit integers has the property that the tens and units digits of each term are, respectively, the hundreds and tens digits of the next term, and the tens and units digits of the last term are, respectively, the hundreds and tens digits of the first term. For example, such a sequence might begin with the terms 247, 475, and 756 and end with the term 824. Let <math>S</math> be the sum of all the terms in the sequence. What is the largest prime factor that always divides <math>S</math>?
 +
 +
<math>\mathrm{(A)}\ 3\qquad \mathrm{(B)}\ 7\qquad \mathrm{(C)}\ 13\qquad \mathrm{(D)}\ 37\qquad \mathrm{(E)}\ 43</math>
  
 
[[2007 AMC 10A Problems/Problem 22|Solution]]
 
[[2007 AMC 10A Problems/Problem 22|Solution]]
  
 
== Problem 23 ==
 
== Problem 23 ==
 +
How many ordered pairs <math>(m,n)</math> of positive integers, with <math>m \ge n</math>, have the property that their squares differ by <math>96</math>?
 +
 +
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 12</math>
  
 
[[2007 AMC 10A Problems/Problem 23|Solution]]
 
[[2007 AMC 10A Problems/Problem 23|Solution]]
  
 
== Problem 24 ==
 
== Problem 24 ==
 +
Circles centered at <math>A</math> and <math>B</math> each have radius <math>2</math>, as shown. Point <math>O</math> is the midpoint of <math>\overline{AB}</math>, and <math>OA = 2\sqrt {2}</math>. Segments <math>OC</math> and <math>OD</math> are tangent to the circles centered at <math>A</math> and <math>B</math>, respectively, and <math>EF</math> is a common tangent. What is the area of the shaded region <math>ECODF</math>?
 +
<center>
 +
<asy>
 +
unitsize(6mm);
 +
defaultpen(fontsize(10pt)+linewidth(.8pt));
 +
dotfactor=3;
 +
pair O=(0,0);
 +
pair A=(-2*sqrt(2),0);
 +
pair B=(2*sqrt(2),0);
 +
pair G=shift(0,2)*A;
 +
pair F=shift(0,2)*B;
 +
pair C=shift(A)*scale(2)*dir(45);
 +
pair D=shift(B)*scale(2)*dir(135);
 +
pair X=A+2*dir(-60);
 +
pair Y=B+2*dir(240);
 +
path P=C--O--D--Arc(B,2,135,90)--G--Arc(A,2,90,45)--cycle;
 +
fill(P,gray);
 +
draw(Circle(A,2));
 +
draw(Circle(B,2));
 +
dot(A);
 +
label("$A$",A,W);
 +
dot(B);
 +
label("$B$",B,E);
 +
dot(C);
 +
label("$C$",C,W);
 +
dot(D);
 +
label("$D$",D,E);
 +
dot(G);
 +
label("$E$",G,N);
 +
dot(F);
 +
label("$F$",F,N);
 +
dot(O);
 +
label("$O$",O,S);
 +
draw(G--F);
 +
draw(C--O--D);
 +
draw(A--B);
 +
draw(A--X);
 +
draw(B--Y);
 +
label("$2$",midpoint(A--X),SW);
 +
label("$2$",midpoint(B--Y),SE);
 +
</asy>
 +
</center>
 +
 +
<math>\text{(A)}\ \frac {8\sqrt {2}}{3} \qquad \text{(B)}\ 8\sqrt {2} - 4 - \pi \qquad \text{(C)}\ 4\sqrt {2} \qquad \text{(D)}\ 4\sqrt {2} + \frac {\pi}{8} \qquad \text{(E)}\ 8\sqrt {2} - 2 - \frac {\pi}{2}</math>
  
 
[[2007 AMC 10A Problems/Problem 24|Solution]]
 
[[2007 AMC 10A Problems/Problem 24|Solution]]
  
 
== Problem 25 ==
 
== Problem 25 ==
 +
For each positive integer <math>n</math>, let <math>S(n)</math> denote the sum of the digits of <math>n.</math> For how many values of <math>n</math> is <math>n + S(n) + S(S(n)) = 2007?</math>
 +
 +
<math>\mathrm{(A)}\ 1 \qquad \mathrm{(B)}\ 2 \qquad \mathrm{(C)}\ 3 \qquad \mathrm{(D)}\ 4 \qquad \mathrm{(E)}\ 5</math>
  
 
[[2007 AMC 10A Problems/Problem 25|Solution]]
 
[[2007 AMC 10A Problems/Problem 25|Solution]]
  
 
== See also ==
 
== See also ==
 +
{{AMC10 box|year=2007|ab=A|before=[[2006 AMC 10B Problems]]|after=[[2007 AMC 10B Problems]]}}
 
* [[AMC 10]]
 
* [[AMC 10]]
 
* [[AMC 10 Problems and Solutions]]
 
* [[AMC 10 Problems and Solutions]]
Line 108: Line 281:
 
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=161 2007 AMC A Math Jam Transcript]
 
* [http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=161 2007 AMC A Math Jam Transcript]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
 +
[[Category:Articles with dollar signs]]
 +
 +
<br>{{MAA Notice}}

Revision as of 12:57, 19 February 2020

2007 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

One ticket to a show costs $$20$ at full price. Susan buys 4 tickets using a coupon that gives her a $25\%$ discount. Pam buys 5 tickets using a coupon that gives her a $30\%$ discount. How many more dollars does Pam pay than Susan?

$\mathrm{(A)}\ 2\qquad \mathrm{(B)}\ 5\qquad \mathrm{(C)}\ 10\qquad \mathrm{(D)}\ 15\qquad \mathrm{(E)}\ 20$

Solution

Problem 2

Define $a@b = ab - b^{2}$ and $a\#b = a + b - ab^{2}$. What is $\frac {6@2}{6\#2}$?

$\text{(A)}\ - \frac {1}{2}\qquad \text{(B)}\ - \frac {1}{4}\qquad \text{(C)}\ \frac {1}{8}\qquad \text{(D)}\ \frac {1}{4}\qquad \text{(E)}\ \frac {1}{2}$

Solution

Problem 3

An aquarium has a rectangular base that measures 100 cm by 40 cm and has a height of 50 cm. It is filled with water to a height of 40 cm. A brick with a rectangular base that measures 40 cm by 20 cm and a height of 10 cm is placed in the aquarium. By how many centimeters does the water rise?

$\text{(A)}\ 0.5 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 1.5 \qquad \text{(D)}\ 2 \qquad \text{(E)}\ 2.5$

Solution

Problem 4

The larger of two consecutive odd integers is three times the smaller. What is their sum?

$\text{(A)}\ 4 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 12 \qquad \text{(D)}\ 16 \qquad \text{(E)}\ 20$

Solution

Problem 5

A school store sells 7 pencils and 8 notebooks for $$4.15$. It also sells 5 pencils and 3 notebooks for $$1.77$. How much do 16 pencils and 10 notebooks cost?

$\text{(A)}\ $1.76 \qquad \text{(B)}\ $5.84 \qquad \text{(C)}\ $6.00 \qquad \text{(D)}\ $6.16 \qquad \text{(E)}\ $6.32$

Solution

Problem 6

At Euclid High School, the number of students taking the AMC 10 was $60$ in 2002, $66$ in 2003, $70$ in 2004, $76$ in 2005, $78$ in 2006, and is $85$ in 2007. Between what two consecutive years was there the largest percentage increase?

$\text{(A)}\ 2002\ \text{and}\ 2003 \qquad \text{(B)}\ 2003\ \text{and}\ 2004 \qquad \text{(C)}\ 2004\ \text{and}\ 2005 \qquad \text{(D)}\ 2005\ \text{and}\ 2006 \qquad \text{(E)}\ 2006\ \text{and}\ 2007$

Solution

Problem 7

Last year Mr. Jon Q. Public received an inheritance. He paid $20\%$ in federal taxes on the inheritance, and paid $10\%$ of what he had left in state taxes. He paid a total of $10500$ for both taxes. How many dollars was his inheritance?

$(\mathrm {A})\ 30000 \qquad (\mathrm {B})\ 32500 \qquad(\mathrm {C})\ 35000 \qquad(\mathrm {D})\ 37500 \qquad(\mathrm {E})\ 40000$

Solution

Problem 8

Triangles $ABC$ and $ADC$ are isosceles with $AB=BC$ and $AD=DC$. Point $D$ is inside triangle $ABC$, angle $ABC$ measures 40 degrees, and angle $ADC$ measures 140 degrees. What is the degree measure of angle $BAD$?

$\mathrm{(A)}\ 20\qquad \mathrm{(B)}\ 30\qquad \mathrm{(C)}\ 40\qquad \mathrm{(D)}\ 50\qquad \mathrm{(E)}\ 60$

Solution

Problem 9

Real numbers $a$ and $b$ satisfy the equations $3^{a} = 81^{b + 2}$ and $125^{b} = 5^{a - 3}$. What is $ab$?

$\text{(A)}\ -60 \qquad \text{(B)}\ -17 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 12 \qquad \text{(E)}\ 60$

Solution

Problem 10

The Dunbar family consists of a mother, a father, and some children. The average age of the members of the family is $20$, the father is $48$ years old, and the average age of the mother and children is $16$. How many children are in the family?

$\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 6$

Solution

Problem 11

The numbers from $1$ to $8$ are placed at the vertices of a cube in such a manner that the sum of the four numbers on each face is the same. What is this common sum?

$\text{(A)}\ 14 \qquad \text{(B)}\ 16 \qquad \text{(C)}\ 18 \qquad \text{(D)}\ 20 \qquad \text{(E)}\ 24$

Solution

Problem 12

Two tour guides are leading six tourists. The guides decide to split up. Each tourist must choose one of the guides, but with the stipulation that each guide must take at least one tourist. How many different groupings of guides and tourists are possible?

$\text{(A)}\ 56 \qquad \text{(B)}\ 58 \qquad \text{(C)}\ 60 \qquad \text{(D)}\ 62 \qquad \text{(E)}\ 64$

Solution

Problem 13

Yan is somewhere between his home and the stadium. To get to the stadium he can walk directly to the stadium, or else he can walk home and then ride his bicycle to the stadium. He rides 7 times as fast as he walks, and both choices require the same amount of time. What is the ratio of Yan's distance from his home to his distance from the stadium?

$\mathrm{(A)}\ \frac 23\qquad \mathrm{(B)}\ \frac 34\qquad \mathrm{(C)}\ \frac 45\qquad \mathrm{(D)}\ \frac 56\qquad \mathrm{(E)}\ \frac 78$

Solution

Problem 14

A triangle with side lengths in the ratio $3 : 4 : 5$ is inscribed in a circle with radius $3$. What is the area of the triangle?

$\mathrm{(A)}\ 8.64\qquad \mathrm{(B)}\ 12\qquad \mathrm{(C)}\ 5\pi\qquad \mathrm{(D)}\ 17.28\qquad \mathrm{(E)}\ 18$

Solution

Problem 15

Four circles of radius $1$ are each tangent to two sides of a square and externally tangent to a circle of radius $2$, as shown. What is the area of the square?

[asy] unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); real h=3*sqrt(2)/2; pair O0=(0,0), O1=(h,h), O2=(-h,h), O3=(-h,-h), O4=(h,-h); pair X=O0+2*dir(30), Y=O2+dir(45); draw((-h-1,-h-1)--(-h-1,h+1)--(h+1,h+1)--(h+1,-h-1)--cycle); draw(Circle(O0,2)); draw(Circle(O1,1)); draw(Circle(O2,1)); draw(Circle(O3,1)); draw(Circle(O4,1)); draw(O0--X); draw(O2--Y); label("$2$",midpoint(O0--X),NW); label("$1$",midpoint(O2--Y),SE); [/asy]

$\text{(A)}\ 32 \qquad \text{(B)}\ 22 + 12\sqrt {2}\qquad \text{(C)}\ 16 + 16\sqrt {3}\qquad \text{(D)}\ 48 \qquad \text{(E)}\ 36 + 16\sqrt {2}$

Solution

Problem 16

Integers $a, b, c,$ and $d$, not necessarily distinct, are chosen independently and at random from 0 to 2007, inclusive. What is the probability that $ad-bc$ is even?

$\mathrm{(A)}\ \frac 38\qquad \mathrm{(B)}\ \frac 7{16}\qquad \mathrm{(C)}\ \frac 12\qquad \mathrm{(D)}\ \frac 9{16}\qquad \mathrm{(E)}\ \frac 58$

Solution

Problem 17

Suppose that $m$ and $n$ are positive integers such that $75m = n^{3}$. What is the minimum possible value of $m + n$?

$\text{(A)}\ 15 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 5700$

Solution

Problem 18

Consider the $12$-sided polygon $ABCDEFGHIJKL$, as shown. Each of its sides has length $4$, and each two consecutive sides form a right angle. Suppose that $\overline{AG}$ and $\overline{CH}$ meet at $M$. What is the area of quadrilateral $ABCM$?

[asy] unitsize(13mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4; pair A=(1,3), B=(2,3), C=(2,2), D=(3,2), Ep=(3,1), F=(2,1), G=(2,0), H=(1,0), I=(1,1), J=(0,1), K=(0,2), L=(1,2); pair M=intersectionpoints(A--G,H--C)[0]; draw(A--B--C--D--Ep--F--G--H--I--J--K--L--cycle); draw(A--G); draw(H--C); dot(M); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,NE); label("$D$",D,NE); label("$E$",Ep,SE); label("$F$",F,SE); label("$G$",G,SE); label("$H$",H,SW); label("$I$",I,SW); label("$J$",J,SW); label("$K$",K,NW); label("$L$",L,NW); label("$M$",M,W); [/asy]

$\text{(A)}\ \frac {44}{3}\qquad \text{(B)}\ 16 \qquad \text{(C)}\ \frac {88}{5}\qquad \text{(D)}\ 20 \qquad \text{(E)}\ \frac {62}{3}$

Solution

Problem 19

A paint brush is swept along both diagonals of a square to produce the symmetric painted area, as shown. Half the area of the square is painted. What is the ratio of the side length of the square to the brush width?

[asy] unitsize(15mm); defaultpen(linewidth(.8pt)); path P=(-sqrt(2)/2,1)--(0,1-sqrt(2)/2)--(sqrt(2)/2,1); path Pc=(-sqrt(2)/2,1)--(0,1-sqrt(2)/2)--(sqrt(2)/2,1)--cycle; path S=(-1,-1)--(-1,1)--(1,1)--(1,-1)--cycle; fill(S,gray); for(int i=0;i<4;++i) { fill(rotate(90*i)*Pc,white); draw(rotate(90*i)*P); } draw(S); [/asy]

$\text{(A)}\ 2\sqrt {2} + 1 \qquad \text{(B)}\ 3\sqrt {2}\qquad \text{(C)}\ 2\sqrt {2} + 2 \qquad \text{(D)}\ 3\sqrt {2} + 1 \qquad \text{(E)}\ 3\sqrt {2} + 2$

Solution

Problem 20

Suppose that the number $a$ satisfies the equation $4 = a + a^{ - 1}$. What is the value of $a^{4} + a^{ - 4}$?

$\text{(A)}\ 164 \qquad \text{(B)}\ 172 \qquad \text{(C)}\ 192 \qquad \text{(D)}\ 194 \qquad \text{(E)}\ 212$

Solution

Problem 21

A sphere is inscribed in a cube that has a surface area of $24$ square meters. A second cube is then inscribed within the sphere. What is the surface area in square meters of the inner cube?

$\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 12$

Solution

Problem 22

A finite sequence of three-digit integers has the property that the tens and units digits of each term are, respectively, the hundreds and tens digits of the next term, and the tens and units digits of the last term are, respectively, the hundreds and tens digits of the first term. For example, such a sequence might begin with the terms 247, 475, and 756 and end with the term 824. Let $S$ be the sum of all the terms in the sequence. What is the largest prime factor that always divides $S$?

$\mathrm{(A)}\ 3\qquad \mathrm{(B)}\ 7\qquad \mathrm{(C)}\ 13\qquad \mathrm{(D)}\ 37\qquad \mathrm{(E)}\ 43$

Solution

Problem 23

How many ordered pairs $(m,n)$ of positive integers, with $m \ge n$, have the property that their squares differ by $96$?

$\text{(A)}\ 3 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 12$

Solution

Problem 24

Circles centered at $A$ and $B$ each have radius $2$, as shown. Point $O$ is the midpoint of $\overline{AB}$, and $OA = 2\sqrt {2}$. Segments $OC$ and $OD$ are tangent to the circles centered at $A$ and $B$, respectively, and $EF$ is a common tangent. What is the area of the shaded region $ECODF$?

[asy] unitsize(6mm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair O=(0,0); pair A=(-2*sqrt(2),0); pair B=(2*sqrt(2),0); pair G=shift(0,2)*A; pair F=shift(0,2)*B; pair C=shift(A)*scale(2)*dir(45); pair D=shift(B)*scale(2)*dir(135); pair X=A+2*dir(-60); pair Y=B+2*dir(240); path P=C--O--D--Arc(B,2,135,90)--G--Arc(A,2,90,45)--cycle; fill(P,gray); draw(Circle(A,2)); draw(Circle(B,2)); dot(A); label("$A$",A,W); dot(B); label("$B$",B,E); dot(C); label("$C$",C,W); dot(D); label("$D$",D,E); dot(G); label("$E$",G,N); dot(F); label("$F$",F,N); dot(O); label("$O$",O,S); draw(G--F); draw(C--O--D); draw(A--B); draw(A--X); draw(B--Y); label("$2$",midpoint(A--X),SW); label("$2$",midpoint(B--Y),SE); [/asy]

$\text{(A)}\ \frac {8\sqrt {2}}{3} \qquad \text{(B)}\ 8\sqrt {2} - 4 - \pi \qquad \text{(C)}\ 4\sqrt {2} \qquad \text{(D)}\ 4\sqrt {2} + \frac {\pi}{8} \qquad \text{(E)}\ 8\sqrt {2} - 2 - \frac {\pi}{2}$

Solution

Problem 25

For each positive integer $n$, let $S(n)$ denote the sum of the digits of $n.$ For how many values of $n$ is $n + S(n) + S(S(n)) = 2007?$

$\mathrm{(A)}\ 1 \qquad \mathrm{(B)}\ 2 \qquad \mathrm{(C)}\ 3 \qquad \mathrm{(D)}\ 4 \qquad \mathrm{(E)}\ 5$

Solution

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2006 AMC 10B Problems
Followed by
2007 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png