Difference between revisions of "2007 AMC 10B Problems/Problem 25"

(added solution)
m (Solution)
Line 8: Line 8:
  
 
==Solution==
 
==Solution==
Let <math>x = \frac{a}{b}</math>. We can then write the given expression as <math>x+\frac{14}{9x} = k</math> where <math>k</math> is an integer. We can rewrite this as a quadratic, <math>9x^2 - 9kx + 14 = 0</math>. By the Quadratic Formula, <math>x = \frac{9k\pm\sqrt{81k^2-504}}{18} = \frac{k}{2}\pm\frac{\sqrt{9k^2-56}}{6}</math>. We know that <math>x</math> must be rational, so <math>9k^2-56</math> must be a perfect square. Let <math>9k^2-56 = n^2</math>. Then, <math>56 = 9k^2-n^2 = (3k - n)(3k + n)</math>. The factors pairs of <math>36</math> are <math>1</math> and <math>56</math>, <math>2</math> and <math>28</math>, <math>4</math> and <math>14</math>, and <math>7</math> and <math>8</math>. Only <math>2</math> and <math>28</math> and <math>4</math> and <math>14</math> give integer solutions, <math>k = 5</math> and <math>n = 13</math> and <math>k = 3</math> and <math>n = 5</math>, respectively. Plugging these back into the original equation, we get <math>\boxed{4 (A)}</math> possibilities for <math>x</math>, namely <math>\frac{1}{3}, \frac{14}{3}, \frac{2}{3},</math> and <math>\frac{7}{3}</math>.
+
Let <math>x = \frac{a}{b}</math>. We can then write the given expression as <math>x+\frac{14}{9x} = k</math> where <math>k</math> is an integer. We can rewrite this as a quadratic, <math>9x^2 - 9kx + 14 = 0</math>. By the Quadratic Formula, <math>x = \frac{9k\pm\sqrt{81k^2-504}}{18} = \frac{k}{2}\pm\frac{\sqrt{9k^2-56}}{6}</math>. We know that <math>x</math> must be rational, so <math>9k^2-56</math> must be a perfect square. Let <math>9k^2-56 = n^2</math>. Then, <math>56 = 9k^2-n^2 = (3k - n)(3k + n)</math>. The factors pairs of <math>56</math> are <math>1</math> and <math>56</math>, <math>2</math> and <math>28</math>, <math>4</math> and <math>14</math>, and <math>7</math> and <math>8</math>. Only <math>2</math> and <math>28</math> and <math>4</math> and <math>14</math> give integer solutions, <math>k = 5</math> and <math>n = 13</math> and <math>k = 3</math> and <math>n = 5</math>, respectively. Plugging these back into the original equation, we get <math>\boxed{4 (A)}</math> possibilities for <math>x</math>, namely <math>\frac{1}{3}, \frac{14}{3}, \frac{2}{3},</math> and <math>\frac{7}{3}</math>.
  
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2007|ab=B|num-b=24|after=Last question}}
 
{{AMC10 box|year=2007|ab=B|num-b=24|after=Last question}}

Revision as of 19:23, 1 August 2012

How many pairs of positive integers (a,b) are there such that a and b have no common factors greater than 1 and:

$\frac{a}{b} + \frac{14b}{9a}$

is an integer?

$\textbf{(A) }4\qquad\textbf{(B) }6\qquad\textbf{(C) }9\qquad\textbf{(D) }12\qquad\textbf{(E) }\text{infinitely many}$

Solution

Let $x = \frac{a}{b}$. We can then write the given expression as $x+\frac{14}{9x} = k$ where $k$ is an integer. We can rewrite this as a quadratic, $9x^2 - 9kx + 14 = 0$. By the Quadratic Formula, $x = \frac{9k\pm\sqrt{81k^2-504}}{18} = \frac{k}{2}\pm\frac{\sqrt{9k^2-56}}{6}$. We know that $x$ must be rational, so $9k^2-56$ must be a perfect square. Let $9k^2-56 = n^2$. Then, $56 = 9k^2-n^2 = (3k - n)(3k + n)$. The factors pairs of $56$ are $1$ and $56$, $2$ and $28$, $4$ and $14$, and $7$ and $8$. Only $2$ and $28$ and $4$ and $14$ give integer solutions, $k = 5$ and $n = 13$ and $k = 3$ and $n = 5$, respectively. Plugging these back into the original equation, we get $\boxed{4 (A)}$ possibilities for $x$, namely $\frac{1}{3}, \frac{14}{3}, \frac{2}{3},$ and $\frac{7}{3}$.

See Also

2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions