Difference between revisions of "2007 AMC 12A Problems/Problem 19"

m (shift down img)
m (Solution 1: A is ambiguous)
Line 9: Line 9:
  
 
=== Solution 1 ===
 
=== Solution 1 ===
From <math>A = \frac 12bh</math>, we have that the height of <math>\triangle ABC</math> is <math>h = \frac{2A}{b} = \frac{2007 \cdot 2}{223} = 18</math>. Thus <math>A</math> lies on the lines <math>y = \pm 18 \quad \mathrm{(1)}</math>.
+
From <math>k = [ABC] = \frac 12bh</math>, we have that the height of <math>\triangle ABC</math> is <math>h = \frac{2k}{b} = \frac{2007 \cdot 2}{223} = 18</math>. Thus <math>A</math> lies on the lines <math>y = \pm 18 \quad \mathrm{(1)}</math>.
  
 
<math>DE = 9\sqrt{2}</math> using 45-45-90 triangles, so in <math>\triangle ADE</math> we have that <math>h = \frac{2 \cdot 7002}{9\sqrt{2}} = 778\sqrt{2}</math>. The slope of <math>DE</math> is <math>1</math>, so the equation of the line is <math>y = x + b \Longrightarrow b = (380) - (680) = -300 \Longrightarrow y = x - 300</math>. The point <math>A</math> lies on one of two [[parallel]] lines that are <math>778\sqrt{2}</math> units away from <math>\overline{DE}</math>. Now take an arbitrary point on the line <math>\overline{DE}</math> and draw the [[perpendicular]] to one of the parallel lines; then draw a line straight down from the same arbitrary point. These form a 45-45-90 <math>\triangle</math>, so the straight line down has a length of <math>778\sqrt{2} \cdot \sqrt{2} = 1556</math>. Now we note that the [[y-intercept]] of the parallel lines is either <math>1556</math> units above or below the y-intercept of line <math>\overline{DE}</math>; hence the equation of the parallel lines is <math>y = x - 300 \pm 1556 \Longrightarrow x = y + 300 \pm 1556 \quad \mathrm{(2)}</math>.
 
<math>DE = 9\sqrt{2}</math> using 45-45-90 triangles, so in <math>\triangle ADE</math> we have that <math>h = \frac{2 \cdot 7002}{9\sqrt{2}} = 778\sqrt{2}</math>. The slope of <math>DE</math> is <math>1</math>, so the equation of the line is <math>y = x + b \Longrightarrow b = (380) - (680) = -300 \Longrightarrow y = x - 300</math>. The point <math>A</math> lies on one of two [[parallel]] lines that are <math>778\sqrt{2}</math> units away from <math>\overline{DE}</math>. Now take an arbitrary point on the line <math>\overline{DE}</math> and draw the [[perpendicular]] to one of the parallel lines; then draw a line straight down from the same arbitrary point. These form a 45-45-90 <math>\triangle</math>, so the straight line down has a length of <math>778\sqrt{2} \cdot \sqrt{2} = 1556</math>. Now we note that the [[y-intercept]] of the parallel lines is either <math>1556</math> units above or below the y-intercept of line <math>\overline{DE}</math>; hence the equation of the parallel lines is <math>y = x - 300 \pm 1556 \Longrightarrow x = y + 300 \pm 1556 \quad \mathrm{(2)}</math>.
  
We just need to find the intersections of these two lines and sum up the values of the [[x-coordinates]]. Substituting the <math>\mathrm{(1)}</math> into <math>\mathrm{(2)}</math>, we get <math>x = \pm 18 + 300 \pm 1556 = 4(300) = 1200 \Longrightarrow \mathrm{(E)}</math>.  
+
We just need to find the intersections of these two lines and sum up the values of the [[x-coordinates]]. Substituting the <math>\mathrm{(1)}</math> into <math>\mathrm{(2)}</math>, we get <math>x = \pm 18 + 300 \pm 1556 = 4(300) = 1200 \Longrightarrow \mathrm{(E)}</math>.
+
 
 
=== Solution 2 ===
 
=== Solution 2 ===
 
We are finding the intersection of two [[parallel]] lines, which will form a [[parallelogram]]. The [[centroid]] of this parallelogram is just the intersection of <math>\overline{BC}</math> amd <math>\overline{DE}</math>, which can easily be calculated to be <math>(300,0)</math>. Now the sum of the x-coordinates is just <math>4(300) = 1200</math>.
 
We are finding the intersection of two [[parallel]] lines, which will form a [[parallelogram]]. The [[centroid]] of this parallelogram is just the intersection of <math>\overline{BC}</math> amd <math>\overline{DE}</math>, which can easily be calculated to be <math>(300,0)</math>. Now the sum of the x-coordinates is just <math>4(300) = 1200</math>.

Revision as of 17:41, 20 September 2007

Problem

Triangles $ABC$ and $ADE$ have areas $2007$ and $7002,$ respectively, with $B = (0,0),$ $C = (223,0),$ $D = (680,380),$ and $E = (689,389).$ What is the sum of all possible x-coordinates of $A$?

$\matrhm{(A)}\ 282 \qquad \mathrm{(B)}\ 300 \qquad \mathrm{(C)}\ 600 \qquad \mathrm{(D)}\ 900 \qquad \mathrm{(E)}\ 1200$ (Error compiling LaTeX. ! Undefined control sequence.)

Solution

2007 12A AMC-19.png

Solution 1

From $k = [ABC] = \frac 12bh$, we have that the height of $\triangle ABC$ is $h = \frac{2k}{b} = \frac{2007 \cdot 2}{223} = 18$. Thus $A$ lies on the lines $y = \pm 18 \quad \mathrm{(1)}$.

$DE = 9\sqrt{2}$ using 45-45-90 triangles, so in $\triangle ADE$ we have that $h = \frac{2 \cdot 7002}{9\sqrt{2}} = 778\sqrt{2}$. The slope of $DE$ is $1$, so the equation of the line is $y = x + b \Longrightarrow b = (380) - (680) = -300 \Longrightarrow y = x - 300$. The point $A$ lies on one of two parallel lines that are $778\sqrt{2}$ units away from $\overline{DE}$. Now take an arbitrary point on the line $\overline{DE}$ and draw the perpendicular to one of the parallel lines; then draw a line straight down from the same arbitrary point. These form a 45-45-90 $\triangle$, so the straight line down has a length of $778\sqrt{2} \cdot \sqrt{2} = 1556$. Now we note that the y-intercept of the parallel lines is either $1556$ units above or below the y-intercept of line $\overline{DE}$; hence the equation of the parallel lines is $y = x - 300 \pm 1556 \Longrightarrow x = y + 300 \pm 1556 \quad \mathrm{(2)}$.

We just need to find the intersections of these two lines and sum up the values of the x-coordinates. Substituting the $\mathrm{(1)}$ into $\mathrm{(2)}$, we get $x = \pm 18 + 300 \pm 1556 = 4(300) = 1200 \Longrightarrow \mathrm{(E)}$.

Solution 2

We are finding the intersection of two parallel lines, which will form a parallelogram. The centroid of this parallelogram is just the intersection of $\overline{BC}$ amd $\overline{DE}$, which can easily be calculated to be $(300,0)$. Now the sum of the x-coordinates is just $4(300) = 1200$.

See also

2007 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
Invalid username
Login to AoPS