2007 AMC 12B Problems/Problem 16

Revision as of 23:41, 24 February 2008 by Chickendude (talk | contribs) (Added Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 16

Each face of a regular tetrahedron is painted either red, white, or blue. Two colorings are considered indistinguishable if two congruent tetrahedra with those colorings can be rotated so that their appearances are identical. How many distinguishable colorings are possible?

$\mathrm {(A)} 15$ $\mathrm {(B)} 18$ $\mathrm {(C)} 27$ $\mathrm {(D)} 54$ $\mathrm {(E)} 81$

Solution

A tetrahedron has 4 sides. The ratio of the number of faces with each color must be one of the following:

$4:0:0$, $3:1:0$, $2:2:0$, or $2:1:1$


The first ratio yields $3$ appearances, one of each color.

The second ratio yields $3\cdot 2 = 6$ appearances, three choices for the first color, and two choices for the second.

The third ratio yields $\binom{3}{2} = 3$ appearances since the two colors are interchangeable.

The fourth ratio yields $3$ appearances. There are three choices for the first color, and since the second two colors are interchangeable, there is only one distinguishable pair that fits them.

The total is $3 + 6 + 3 + 3 = 15$ appearances $\Rightarrow \mathrm{(A)}$

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions