Difference between revisions of "2007 AMC 12B Problems/Problem 24"

(rewrote to make it more clear and short)
(Problem 24)
Line 1: Line 1:
 
==Problem 24==
 
==Problem 24==
How many pairs of positive integers <math>(a,b)</math> are there such that <math>gcd(a,b)=1</math> and <cmath>\frac{a}{b}+\frac{14b}{9a}</cmath> is an integer?
+
How many pairs of positive integers <math>(a,b)</math> are there such that <math>\gcd(a,b)=1</math> and <cmath>\frac{a}{b}+\frac{14b}{9a}</cmath> is an integer?
  
 
<math>\mathrm {(A)} 4</math>  <math>\mathrm {(B)} 6</math>  <math>\mathrm {(C)} 9</math>  <math>\mathrm {(D)} 12</math>  <math>\mathrm {(E)} \text{infinitely many}</math>
 
<math>\mathrm {(A)} 4</math>  <math>\mathrm {(B)} 6</math>  <math>\mathrm {(C)} 9</math>  <math>\mathrm {(D)} 12</math>  <math>\mathrm {(E)} \text{infinitely many}</math>

Revision as of 22:23, 18 April 2012

Problem 24

How many pairs of positive integers $(a,b)$ are there such that $\gcd(a,b)=1$ and \[\frac{a}{b}+\frac{14b}{9a}\] is an integer?

$\mathrm {(A)} 4$ $\mathrm {(B)} 6$ $\mathrm {(C)} 9$ $\mathrm {(D)} 12$ $\mathrm {(E)} \text{infinitely many}$

Solution

Combining the fraction, $\frac{9a^2 + 14b^2}{9ab}$ must be an integer.

Since the denominator contains a factor of $9$, $9 | 9a^2 + 14b^2 \quad\Longrightarrow\quad 9 | b^2 \quad\Longrightarrow\quad 3 | b$

Rewriting $b$ as $b = 3n$ for some positive integer $n$, we can rewrite the fraction as $\frac{a^2 + 14n^2}{3an}$

Since the denominator now contains a factor of $n$, we get $n | a^2 + 14n^2 \quad\Longrightarrow\quad n | a^2$.

But since $1=gcd(a,b)=gcd(a,3n)=gcd(a,n)$, we must have $n=1$, and thus $b=3$.

For $b=3$ the original fraction simplifies to $\frac{a^2 + 14}{3a}$.

For that to be an integer, $a$ must divide $14$, and therefore we must have $a\in\{1,2,7,14\}$. Each of these values does indeed yield an integer.

Thus there are four solutions: $(1,3)$, $(2,3)$, $(7,3)$, $(14,3)$ and the answer is $\mathrm {(A)}$

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions