Difference between revisions of "2007 AMC 12B Problems/Problem 25"

(Solution)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
Let <math>A=(0,0,0)</math>, and <math>B=(2,0,0)</math>. Since <math>EA=2</math>, we could let <math>C=(2,0,2)</math>, <math>D=(2,2,2)</math>, and <math>E=(2,2,0)</math>. Now to get back to <math>A</math> we need another vertex <math>F=(0,2,0)</math>. Now if we look at this configuration as if it was two dimensions, we would see a square missing a side if we don't draw <math>FA</math>. Now we can bend these three sides into an equilateral triangle, and the coordinates change: <math>A=(0,0,0)</math>, <math>B=(2,0,0)</math>, <math>C=(2,0,2)</math>, <math>D=(1,\sqrt{3},2)</math>, and <math>E=(1,\sqrt{3},0)</math>. Checking for all the requirements, they are all satisfied. Now we find the area of triangle <math>BDE</math>. It is a <math>2\times 2\times 2\sqrt{2}</math> triangle, which is an isosceles right triangle. Thus the area of it is <math>\frac{2\cdot2}{2}=2\Rightarrow \mathrm{(C)}</math>.
+
Let <math>A=(0,0,0)</math>, and <math>B=(2,0,0)</math>. Since <math>EA=2</math>, we could let <math>C=(2,0,2)</math>, <math>D=(2,2,2)</math>, and <math>E=(2,2,0)</math>. Now to get back to <math>A</math> we need another vertex <math>F=(0,2,0)</math>. Now if we look at this configuration as if it was two dimensions, we would see a square missing a side if we don't draw <math>FA</math>. Now we can bend these three sides into an equilateral triangle, and the coordinates change: <math>A=(0,0,0)</math>, <math>B=(2,0,0)</math>, <math>C=(2,0,2)</math>, <math>D=(1,\sqrt{3},2)</math>, and <math>E=(1,\sqrt{3},0)</math>. Checking for all the requirements, they are all satisfied. Now we find the area of triangle <math>BDE</math>. The side lengths of this triangle are <math>2, 2, 2\sqrt{2}</math>, which is an isosceles right triangle. Thus the area of it is <math>\frac{2\cdot2}{2}=2\Rightarrow \mathrm{(C)}</math>.
  
 
==See also==
 
==See also==

Revision as of 23:50, 27 January 2018

Problem

Points $A,B,C,D$ and $E$ are located in 3-dimensional space with $AB=BC=CD=DE=EA=2$ and $\angle ABC=\angle CDE=\angle DEA=90^o$. The plane of $\triangle ABC$ is parallel to $\overline{DE}$. What is the area of $\triangle BDE$?

$\mathrm {(A)} \sqrt{2}\qquad \mathrm {(B)} \sqrt{3}\qquad \mathrm {(C)} 2\qquad \mathrm {(D)} \sqrt{5}\qquad \mathrm {(E)} \sqrt{6}$

Solution

Let $A=(0,0,0)$, and $B=(2,0,0)$. Since $EA=2$, we could let $C=(2,0,2)$, $D=(2,2,2)$, and $E=(2,2,0)$. Now to get back to $A$ we need another vertex $F=(0,2,0)$. Now if we look at this configuration as if it was two dimensions, we would see a square missing a side if we don't draw $FA$. Now we can bend these three sides into an equilateral triangle, and the coordinates change: $A=(0,0,0)$, $B=(2,0,0)$, $C=(2,0,2)$, $D=(1,\sqrt{3},2)$, and $E=(1,\sqrt{3},0)$. Checking for all the requirements, they are all satisfied. Now we find the area of triangle $BDE$. The side lengths of this triangle are $2, 2, 2\sqrt{2}$, which is an isosceles right triangle. Thus the area of it is $\frac{2\cdot2}{2}=2\Rightarrow \mathrm{(C)}$.

See also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png