ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

Difference between revisions of "2007 AMC 8 Problems"

m (Problem 20)
Line 1: Line 1:
==Problem 1==
+
'''2007 AMC 8''' problems and solutions. The first link contains the full set of test problems.  The rest contain each individual problem and its solution.
Theresa's parents have agreed to buy her tickets to see her favorite band if she spends an average of <math>10</math> hours per week helping around the house for <math>6</math> weeks. For the first <math>5</math> weeks she helps around the house for <math>8</math>, <math>11</math>, <math>7</math>, <math>12</math> and <math>10</math> hours. How many hours must she work for the final week to earn the tickets?
 
  
<math>\mathrm{(A)}\ 9 \qquad\mathrm{(B)}\ 10 \qquad\mathrm{(C)}\ 11 \qquad\mathrm{(D)}\ 12 \qquad\mathrm{(E)}\ 13</math>
+
* [[2007 AMC 8 Answer Key]]
 
+
* [[2007 AMC 8 Problems]]
[[2007 AMC 8 Problems/Problem 1|Solution]]
+
** [[2007 AMC 8 Problems/Problem 1]]
 
+
** [[2007 AMC 8 Problems/Problem 2]]
==Problem 2==
+
** [[2007 AMC 8 Problems/Problem 3]]
<math>650</math> students were surveyed about their pasta preferences. The choices were lasagna, manicotti, ravioli and spaghetti. The results of the survey are displayed in the bar graph. What is the ratio of the number of students who preferred spaghetti to the number of students who preferred manicotti?
+
** [[2007 AMC 8 Problems/Problem 4]]
 
+
** [[2007 AMC 8 Problems/Problem 5]]
<center>[[Image:AMC8_2007_2.png]]</center>
+
** [[2007 AMC 8 Problems/Problem 6]]
 
+
** [[2007 AMC 8 Problems/Problem 7]]
<math>\mathrm{(A)} \frac{2}{5} \qquad \mathrm{(B)} \frac{1}{2} \qquad \mathrm{(C)} \frac{5}{4} \qquad \mathrm{(D)} \frac{5}{3} \qquad \mathrm{(E)} \frac{5}{2}</math>
+
** [[2007 AMC 8 Problems/Problem 8]]
 
+
** [[2007 AMC 8 Problems/Problem 9]]
[[2007 AMC 8 Problems/Problem 2|Solution]]
+
** [[2007 AMC 8 Problems/Problem 10]]
 
+
** [[2007 AMC 8 Problems/Problem 11]]
==Problem 3==
+
** [[2007 AMC 8 Problems/Problem 12]]
 
+
** [[2007 AMC 8 Problems/Problem 13]]
What is the sum of the two smallest prime factors of <math>250</math>?
+
** [[2007 AMC 8 Problems/Problem 14]]
 
+
** [[2007 AMC 8 Problems/Problem 15]]
<math>\mathrm{(A)}\ 2 \qquad\mathrm{(B)}\ 5 \qquad\mathrm{(C)}\ 7 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 12</math>
+
** [[2007 AMC 8 Problems/Problem 16]]
 
+
** [[2007 AMC 8 Problems/Problem 17]]
[[2007 AMC 8 Problems/Problem 3|Solution]]
+
** [[2007 AMC 8 Problems/Problem 18]]
 
+
** [[2007 AMC 8 Problems/Problem 19]]
==Problem 4==
+
** [[2007 AMC 8 Problems/Problem 20]]
 
+
** [[2007 AMC 8 Problems/Problem 21]]
A haunted house has six windows. In how many ways can
+
** [[2007 AMC 8 Problems/Problem 22]]
Georgie the Ghost enter the house by one window and leave
+
** [[2007 AMC 8 Problems/Problem 23]]
by a different window?
+
** [[2007 AMC 8 Problems/Problem 24]]
 
+
** [[2007 AMC 8 Problems/Problem 25]]
<math>\mathrm{(A)}\ 12 \qquad\mathrm{(B)}\ 15 \qquad\mathrm{(C)}\ 18 \qquad\mathrm{(D)}\ 30 \qquad\mathrm{(E)}\ 36</math>
 
 
 
[[2007 AMC 8 Problems/Problem 4|Solution]]
 
 
 
==Problem 5==
 
 
 
Chandler wants to buy a <math>\</math><math>500</math> mountain bike. For his birthday, his grandparents
 
send him <math>\</math><math>50</math>, his aunt sends him <math>\</math><math>35</math> and his cousin gives him <math>\</math><math>15</math>. He earns
 
<math>\</math><math>16</math> per week for his paper route. He will use all of his birthday money and all
 
of the money he earns from his paper route. In how many weeks will he be able
 
to buy the mountain bike?
 
 
 
<math>\mathrm{(A)}\ 24 \qquad\mathrm{(B)}\ 25 \qquad\mathrm{(C)}\ 26 \qquad\mathrm{(D)}\ 27 \qquad\mathrm{(E)}\ 28</math>
 
 
 
[[2007 AMC 8 Problems/Problem 5|Solution]]
 
 
 
==Problem 6==
 
 
 
The average cost of a long-distance call in the USA in <math>1985</math> was
 
<math>41</math> cents per minute, and the average cost of a long-distance
 
call in the USA in <math>2005</math> was <math>7</math> cents per minute. Find the
 
approximate percent decrease in the cost per minute of a long-
 
distance call.
 
 
 
<math>\mathrm{(A)}\ 7 \qquad\mathrm{(B)}\ 17 \qquad\mathrm{(C)}\ 34 \qquad\mathrm{(D)}\ 41 \qquad\mathrm{(E)}\ 80</math>
 
 
 
[[2007 AMC 8 Problems/Problem 6|Solution]]
 
 
 
==Problem 7==
 
 
 
The average age of <math>5</math> people in a room is <math>30</math> years. An <math>18</math>-year-old person leaves
 
the room. What is the average age of the four remaining people?
 
 
 
<math>\mathrm{(A)}\ 25 \qquad\mathrm{(B)}\ 26 \qquad\mathrm{(C)}\ 29 \qquad\mathrm{(D)}\ 33 \qquad\mathrm{(E)}\ 36</math>
 
 
 
[[2007 AMC 8 Problems/Problem 7|Solution]]
 
 
 
==Problem 8==
 
 
 
In trapezoid <math>ABCD</math>, <math>AD</math> is perpendicular to <math>DC</math>,
 
<math>AD</math> = <math>AB</math> = <math>3</math>, and <math>DC</math> = <math>6</math>. In addition, <math>E</math> is on
 
<math>DC</math>, and <math>BE</math> is parallel to <math>AD</math>. Find the area of
 
<math>\triangle BEC</math>.
 
 
 
<center>[[Image:AMC8_2007_8.png]]</center>
 
 
 
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 4.5 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 18</math>
 
 
 
[[2007 AMC 8 Problems/Problem 8|Solution]]
 
 
 
==Problem 9==
 
 
 
To complete the grid below, each of the digits 1 through 4 must occur once
 
in each row and once in each column. What number will occupy the lower
 
right-hand square?
 
 
 
<center>[[Image:AMC8_2007_9.png]]</center>
 
 
 
<math>\mathrm{(A)}\ 1 \qquad \mathrm{(B)}\ 2 \qquad \mathrm{(C)}\ 3 \qquad \mathrm{(D)}\ 4 \qquad \mathrm{(E)}</math> cannot be determined
 
 
 
[[2007 AMC 8 Problems/Problem 9|Solution]]
 
 
 
==Problem 10==
 
 
 
For any positive integer <math>n</math>, define <math>\boxed{n}</math> to be the sum of the positive factors of <math>n</math>.
 
For example, <math>\boxed{6} = 1 + 2 + 3 + 6 = 12</math>. Find <math>\boxed{\boxed{11}}</math> .
 
 
 
<math>\mathrm{(A)}\ 13 \qquad \mathrm{(B)}\ 20 \qquad \mathrm{(C)}\ 24 \qquad \mathrm{(D)}\ 28 \qquad \mathrm{(E)}\ 30</math>
 
 
 
[[2007 AMC 8 Problems/Problem 10|Solution]]
 
 
 
==Problem 11==
 
 
 
Tiles <math>I, II, III</math> and <math>IV</math> are translated so one tile coincides with each of the rectangles <math>A, B, C</math> and <math>D</math>. In the final arrangement, the two numbers on any side common to two adjacent tiles must be the same. Which of the tiles is translated to Rectangle <math>C</math>?
 
 
 
<center>[[Image:AMC8_2007_11.png]]</center>
 
 
 
<math>\mathrm{(A)}\ I \qquad \mathrm{(B)}\ II \qquad \mathrm{(C)}\ III \qquad \mathrm{(D)}\ IV \qquad \mathrm{(E)}</math> cannot be determined
 
 
 
[[2007 AMC 8 Problems/Problem 11|Solution]]
 
 
 
==Problem 12==
 
 
 
A unit hexagram is composed of a regular hexagon of side length <math>1</math> and its <math>6</math>
 
equilateral triangular extensions, as shown in the diagram. What is the ratio of
 
the area of the extensions to the area of the original hexagon?
 
 
 
<center>[[Image:AMC8_2007_12.png]]</center>
 
 
 
<math>\mathrm{(A)}\ 1:1 \qquad \mathrm{(B)}\ 6:5  \qquad \mathrm{(C)}\ 3:2 \qquad \mathrm{(D)}\ 2:1 \qquad \mathrm{(E)}\ 3:1</math>
 
 
 
[[2007 AMC 8 Problems/Problem 12|Solution]]
 
 
 
==Problem 13==
 
 
 
Sets <math>A</math> and <math>B</math>, shown in the Venn diagram, have the same number of elements.
 
Their union has <math>2007</math> elements and their intersection has <math>1001</math> elements. Find
 
the number of elements in <math>A</math>.
 
 
 
<center>[[Image:AMC8_2007_13.png]]</center>
 
 
 
<math>\mathrm{(A)}\ 503 \qquad \mathrm{(B)}\ 1006 \qquad \mathrm{(C)}\ 1504 \qquad \mathrm{(D)}\ 1507 \qquad \mathrm{(E)}\ 1510</math>
 
 
 
[[2007 AMC 8 Problems/Problem 13|Solution]]
 
 
 
==Problem 14==
 
 
 
The base of isosceles <math>\triangle ABC</math> is <math>24</math> and its area is <math>60</math>. What is the length of one
 
of the congruent sides?
 
 
 
<math>\mathrm{(A)}\ 5 \qquad \mathrm{(B)}\ 8 \qquad \mathrm{(C)}\ 13 \qquad \mathrm{(D)}\ 14 \qquad \mathrm{(E)}\ 18</math>
 
 
 
[[2007 AMC 8 Problems/Problem 14|Solution]]
 
 
 
==Problem 15==
 
 
 
Let <math>a, b</math> and <math>c</math> be numbers with <math>0 < a < b < c</math>. Which of the following is
 
impossible?
 
 
 
<math>\mathrm{(A)} \ a + c < b  \qquad \mathrm{(B)} \ a * b < c \qquad \mathrm{(C)} \ a + b < c \qquad \mathrm{(D)} \ a * c < b \qquad \mathrm{(E)}\frac{b}{c} = a</math>
 
 
 
[[2007 AMC 8 Problems/Problem 15|Solution]]
 
 
 
==Problem 16==
 
 
 
Amanda Reckonwith draws five circles with radii <math>1, 2, 3,
 
4</math> and <math>5</math>. Then for each circle she plots the point <math>(C,A)</math>,
 
where <math>C</math> is its circumference and <math>A</math> is its area. Which of the
 
following could be her graph?
 
 
 
<center>[[Image:AMC8_2007_16.png]]</center>
 
 
 
[[2007 AMC 8 Problems/Problem 16|Solution]]
 
 
 
==Problem 17==
 
 
 
A mixture of <math>30</math> liters of paint is <math>25\%</math> red tint, <math>30\%</math> yellow
 
tint and <math>45\%</math> water. Five liters of yellow tint are added to
 
the original mixture. What is the percent of yellow tint
 
in the new mixture?
 
 
 
<math>\mathrm{(A)}\ 25 \qquad \mathrm{(B)}\ 35 \qquad \mathrm{(C)}\ 40 \qquad \mathrm{(D)}\ 45 \qquad \mathrm{(E)}\ 50</math>
 
 
 
[[2007 AMC 8 Problems/Problem 17|Solution]]
 
 
 
==Problem 18==
 
 
 
The product of the two <math>99</math>-digit numbers
 
 
 
<math>303,030,303,...,030,303</math> and <math>505,050,505,...,050,505</math>
 
 
 
has thousands digit <math>A</math> and units digit <math>B</math>. What is the sum of <math>A</math> and <math>B</math>?
 
 
 
<math>\mathrm{(A)}\ 3 \qquad \mathrm{(B)}\ 5 \qquad \mathrm{(C)}\ 6 \qquad \mathrm{(D)}\ 8 \qquad \mathrm{(E)}\ 10</math>
 
 
 
[[2007 AMC 8 Problems/Problem 18|Solution]]
 
 
 
==Problem 19==
 
 
 
Pick two consecutive positive integers whose sum is less than <math>100</math>. Square both
 
of those integers and then find the difference of the squares. Which of the
 
following could be the difference?
 
 
 
<math>\mathrm{(A)}\ 2 \qquad \mathrm{(B)}\ 64 \qquad \mathrm{(C)}\ 79 \qquad \mathrm{(D)}\ 96 \qquad \mathrm{(E)}\ 131</math>
 
 
 
[[2007 AMC 8 Problems/Problem 19|Solution]]
 
 
 
==Problem 20==
 
 
 
Before district play, the Unicorns had won <math>45\%</math> of their
 
basketball games. During district play, they won six more
 
games and lost two, to finish the season having won half
 
their games. How many games did the Unicorns play in
 
all?
 
 
 
<math>\mathrm{(A)}\ 48 \qquad \mathrm{(B)}\ 50 \qquad \mathrm{(C)}\ 52 \qquad \mathrm{(D)}\ 54 \qquad \mathrm{(E)}\ 60</math>
 
 
 
[[2007 AMC 8 Problems/Problem 20|Solution]]
 
 
 
==Problem 21==
 
 
 
Two cards are dealt from a deck of four red cards labeled <math>A, B, C, D</math> and four
 
green cards labeled <math>A, B, C, D</math>. A winning pair is two of the same color or two
 
of the same letter. What is the probability of drawing a winning pair?
 
 
 
<math>\mathrm{(A)} \frac{2}{7} \qquad \mathrm{(B)} \frac{3}{8} \qquad \mathrm{(C)} \frac{1}{2} \qquad \mathrm{(D)} \frac{4}{7} \qquad \mathrm{(E)} \frac{5}{8}</math>
 
 
 
[[2007 AMC 8 Problems/Problem 21|Solution]]
 
 
 
==Problem 22==
 
 
 
A lemming sits at a corner of a square with side length <math>10</math> meters. The lemming
 
runs <math>6.2</math> meters along a diagonal toward the opposite corner. It stops, makes
 
a <math>90</math> degree right turn and runs <math>2</math> more meters. A scientist measures the shortest
 
distance between the lemming and each side of the square. What is the average
 
of these four distances in meters?
 
 
 
<math>\mathrm{(A)}\ 2 \qquad \mathrm{(B)}\ 4.5 \qquad \mathrm{(C)}\ 5 \qquad \mathrm{(D)}\ 6.2 \qquad \mathrm{(E)}\ 7</math>
 
 
 
[[2007 AMC 8 Problems/Problem 22|Solution]]
 
 
 
==Problem 23==
 
 
 
What is the area of the shaded pinwheel shown in the <math>5</math> x <math>5</math> grid?
 
 
 
<center>[[Image:AMC8_2007_23.png]]</center>
 
 
 
<math>\mathrm{(A)}\ 4 \qquad\mathrm{(B)}\ 6 \qquad\mathrm{(C)}\ 8 \qquad\mathrm{(D)}\ 10 \qquad\mathrm{(E)}\ 12</math>
 
 
 
[[2007 AMC 8 Problems/Problem 23|Solution]]
 
 
 
==Problem 24==
 
 
 
A bag contains four pieces of paper, each labeled with one of the digits "1, 2, 3"
 
or "4", with no repeats. Three of these pieces are drawn, one at a time without
 
replacement, to construct a three-digit number. What is the probability that
 
the three-digit number is a multiple of 3?
 
 
 
<math>\mathrm{(A)} \frac{1}{4} \qquad \mathrm{(B)} \frac{1}{3} \qquad \mathrm{(C)} \frac{1}{2} \qquad \mathrm{(D)} \frac{2}{3} \qquad \mathrm{(E)} \frac{3}{4}</math>
 
 
 
[[2007 AMC 8 Problems/Problem 24|Solution]]
 
 
 
==Problem 25==
 
 
 
On the dart board shown in the Figure, the outer circle has radius <math>6</math> and the
 
inner circle has radius <math>3</math>. Three radii divide each circle into three congruent
 
regions, with point values shown. The probability that a dart will hit a given
 
region is proportional to the area of the region. When two darts hit this board,
 
the score is the sum of the point values in the regions. What is the probability
 
that the score is odd?
 
 
 
<center>[[Image:AMC8_2007_25.png]]</center>
 
 
 
<math>\mathrm{(A)} \frac{17}{36} \qquad \mathrm{(B)} \frac{35}{72} \qquad \mathrm{(C)} \frac{1}{2} \qquad \mathrm{(D)} \frac{37}{72} \qquad \mathrm{(E)} \frac{19}{36}</math>
 
 
 
[[2007 AMC 8 Problems/Problem 25|Solution]]
 
 
 
==See also==
 
* [[AMC 8]]
 
* [[AMC 8 Problems and Solutions]]
 

Revision as of 13:08, 9 December 2012