# Difference between revisions of "2007 iTest Problems/Problem 32"

## Problem

When a rectangle frames a parabola such that a side of the rectangle is parallel to the parabola's axis of symmetry, the parabola divides the rectangle into regions whose areas are in the ratio $2$ to $1$. How many integer values of k are there such that $0 and the area between the parabola $y=k-x^2$ and the $x$-axis is an integer?

$[asy] import graph; size(300); defaultpen(linewidth(0.8)+fontsize(10)); real k=1.5; real endp=sqrt(k); real f(real x) { return k-x^2; } path parabola=graph(f,-endp,endp)--cycle; filldraw(parabola, lightgray); draw((endp,0)--(endp,k)--(-endp,k)--(-endp,0)); label("Region I", (0,2*k/5)); label("Box II", (51/64*endp,13/16*k)); label("area(I) = \frac23\,area(II)",(5/3*endp,k/2));[/asy]$

## Solution

$[asy] import graph; size(300); defaultpen(linewidth(0.8)+fontsize(10)); real k=1.5; real endp=sqrt(k); real f(real x) { return k-x^2; } path parabola=graph(f,-endp,endp)--cycle; filldraw(parabola, lightgray); draw((endp,0)--(endp,k)--(-endp,k)--(-endp,0)); label("Region I", (0,2*k/5)); label("Box II", (51/64*endp,13/16*k)); label("area(I) = \frac23\,area(II)",(0,k),N); label("2 \sqrt{k}",(0,0),S); label("k",(endp,k/2),E); [/asy]$

The vertex of the quadratic is $(0,k)$. Factoring the quadratic results in $(\sqrt{k} + x)(\sqrt{k} - x)$, so the two zeroes are $(-\sqrt{k},0)$ and $(\sqrt{k},0)$. Thus, the area of the rectangle is $2k\sqrt{k}$, so the area of the parabola is $\frac{4}{3}k \sqrt{k}$.

In order for $\frac{4}{3}k \sqrt{k}$ to be an integer, $k$ must be a perfect square and a multiple of $3$. Note that $45^2 = 2025$, so the values that work are $3^2, 6^2, 9^2 \cdots 42^2$. In total, there are $\boxed{14}$ values of $k$ that satisfy the conditions.

 2007 iTest (Problems) Preceded by:Problem 31 Followed by:Problem 33 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4