Difference between revisions of "2008 AIME II Problems/Problem 11"

(Solution)
Line 12: Line 12:
 
D(PC); D(QC);  
 
D(PC); D(QC);  
 
MP("A",A,N,f);MP("B",B,f);MP("C",C,f);MP("X",X,f);MP("Y",Y,f);D(MP("P",P,NW,f));D(MP("Q",Q,NW,f));
 
MP("A",A,N,f);MP("B",B,f);MP("C",C,f);MP("X",X,f);MP("Y",Y,f);D(MP("P",P,NW,f));D(MP("Q",Q,NW,f));
</asy></center>
+
</asy></center
  
 
Let <math>X</math> and <math>Y</math> be the feet of the [[perpendicular]]s from <math>P</math> and <math>Q</math> to <math>BC</math>, respectively. Let the radius of <math>\odot Q</math> be <math>r</math>. We know that <math>PQ = r + 16</math>. From <math>Q</math> draw segment <math>\overline{QM} \parallel \overline{BC}</math> such that <math>M</math> is on <math>PX</math>. Clearly, <math>QM = XY</math> and <math>PM = 16-r</math>. Also, we know <math>QPM</math> is a right triangle.
 
Let <math>X</math> and <math>Y</math> be the feet of the [[perpendicular]]s from <math>P</math> and <math>Q</math> to <math>BC</math>, respectively. Let the radius of <math>\odot Q</math> be <math>r</math>. We know that <math>PQ = r + 16</math>. From <math>Q</math> draw segment <math>\overline{QM} \parallel \overline{BC}</math> such that <math>M</math> is on <math>PX</math>. Clearly, <math>QM = XY</math> and <math>PM = 16-r</math>. Also, we know <math>QPM</math> is a right triangle.

Revision as of 11:39, 11 February 2018

Problem

In triangle $ABC$, $AB = AC = 100$, and $BC = 56$. Circle $P$ has radius $16$ and is tangent to $\overline{AC}$ and $\overline{BC}$. Circle $Q$ is externally tangent to $P$ and is tangent to $\overline{AB}$ and $\overline{BC}$. No point of circle $Q$ lies outside of $\triangle ABC$. The radius of circle $Q$ can be expressed in the form $m - n\sqrt {k}$, where $m$, $n$, and $k$ are positive integers and $k$ is the product of distinct primes. Find $m + nk$.

Solution

[asy] size(200); pathpen=black;pointpen=black;pen f=fontsize(9); real r=44-6*35^.5; pair A=(0,96),B=(-28,0),C=(28,0),X=C-(64/3,0),Y=B+(4*r/3,0),P=X+(0,16),Q=Y+(0,r),M=foot(Q,X,P); path PC=CR(P,16),QC=CR(Q,r); D(A--B--C--cycle); D(Y--Q--P--X); D(Q--M); D(P--C,dashed); D(PC); D(QC);  MP("A",A,N,f);MP("B",B,f);MP("C",C,f);MP("X",X,f);MP("Y",Y,f);D(MP("P",P,NW,f));D(MP("Q",Q,NW,f)); [/asy]</center

Let $X$ and $Y$ be the feet of the perpendiculars from $P$ and $Q$ to $BC$, respectively. Let the radius of $\odot Q$ be $r$. We know that $PQ = r + 16$. From $Q$ draw segment $\overline{QM} \parallel \overline{BC}$ such that $M$ is on $PX$. Clearly, $QM = XY$ and $PM = 16-r$. Also, we know $QPM$ is a right triangle.

To find $XC$, consider the right triangle $PCX$. Since $\odot P$ is tangent to $\overline{AC},\overline{BC}$, then $PC$ bisects $\angle ACB$. Let $\angle ACB = 2\theta$; then $\angle PCX = \angle QBX = \theta$. Dropping the altitude from $A$ to $BC$, we recognize the $7 - 24 - 25$ right triangle, except scaled by $4$.

So we get that $\tan(2\theta) = 24/7$. From the half-angle identity, we find that $\tan(\theta) = \frac {3}{4}$. Therefore, $XC = \frac {64}{3}$. By similar reasoning in triangle $QBY$, we see that $BY = \frac {4r}{3}$.

We conclude that $XY = 56 - \frac {4r + 64}{3} = \frac {104 - 4r}{3}$.

So our right triangle $QPM$ has sides $r + 16$, $r - 16$, and $\frac {104 - 4r}{3}$.

By the Pythagorean Theorem, simplification, and the quadratic formula, we can get $r = 44 - 6\sqrt {35}$, for a final answer of $\fbox{254}$.

See also

2008 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS