Difference between revisions of "2008 AMC 10A Problems/Problem 18"

(Added problem, solution still needed)
 
(solutions)
Line 1: Line 1:
 
==Problem==
 
==Problem==
A right triangle has perimeter 32 and area 20. What is the length of its hypotenuse?
+
A [[right triangle]] has [[perimeter]] <math>32</math> and area <math>20</math>. What is the length of its [[hypotenuse]]?
  
 
<math>\mathrm{(A)}\ \frac{57}{4}\qquad\mathrm{(B)}\ \frac{59}{4}\qquad\mathrm{(C)}\ \frac{61}{4}\qquad\mathrm{(D)}\ \frac{63}{4}\qquad\mathrm{(E)}\ \frac{65}{4}</math>
 
<math>\mathrm{(A)}\ \frac{57}{4}\qquad\mathrm{(B)}\ \frac{59}{4}\qquad\mathrm{(C)}\ \frac{61}{4}\qquad\mathrm{(D)}\ \frac{63}{4}\qquad\mathrm{(E)}\ \frac{65}{4}</math>
  
 +
__TOC__
 
==Solution==
 
==Solution==
{{solution}}
+
=== Solution 1 ===
 +
Let the legs of the triangle have lengths <math>a,b</math>. Then, by the [[Pythagorean Theorem]], the length of the hypotenuse is <math>\sqrt{a^2+b^2}</math>, and the area of the triangle is <math>\frac 12 ab</math>. So we have the two equations
 +
<center><math>\begin{align}
 +
a+b+\sqrt{a^2+b^2} &= 32 \\
 +
\frac{1}{2}ab &= 20
 +
\end{align}</math></center>
 +
Re-arranging the first equation and squaring,
 +
<center><math>\begin{align*}
 +
\sqrt{a^2+b^2} &= 32-(a+b)\\
 +
a^2 + b^2 &= 32^2 - 64(a+b) + (a+b)^2\\
 +
a^2 + b^2 + 64(a+b) &= a^2 + b^2 + 2ab + 32^2\\
 +
a+b &= \frac{2ab+32^2}{64}\end{align*}</math></center>
 +
From <math>(2)</math> we have <math>2ab = 80</math>, so
 +
<center><math>a+b &= \frac{80 + 32^2}{64} = \frac{59}{4}.</math></center>
 +
The length of the hypotenuse is <math>p - a - b = 32 - \frac{69}{4} = \frac{59}{4}\ \mathrm{(B)}</math>.
 +
 
 +
=== Solution 2 ===
 +
From the formula <math>A = rs</math>, where <math>A</math> is the area of a triangle, <math>r</math> is its [[inradius]], and <math>s</math> is the [[semiperimeter]], we can find that <math>r = \frac{20}{32/2} = \frac{5}{4}</math>. It is known that in a right triangle, <math>r = s - h</math>, where <math>h</math> is the hypotenuse, so <math>h = 16 - \frac{5}{4} = \frac{59}{4}</math>.
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=A|num-b=17|num-a=19}}
 
{{AMC10 box|year=2008|ab=A|num-b=17|num-a=19}}
 +
 +
[[Category:Introductory Geometry Problems]]

Revision as of 11:04, 26 April 2008

Problem

A right triangle has perimeter $32$ and area $20$. What is the length of its hypotenuse?

$\mathrm{(A)}\ \frac{57}{4}\qquad\mathrm{(B)}\ \frac{59}{4}\qquad\mathrm{(C)}\ \frac{61}{4}\qquad\mathrm{(D)}\ \frac{63}{4}\qquad\mathrm{(E)}\ \frac{65}{4}$

Solution

Solution 1

Let the legs of the triangle have lengths $a,b$. Then, by the Pythagorean Theorem, the length of the hypotenuse is $\sqrt{a^2+b^2}$, and the area of the triangle is $\frac 12 ab$. So we have the two equations

$\begin{align}

a+b+\sqrt{a^2+b^2} &= 32 \\ \frac{1}{2}ab &= 20

\end{align}$ (Error compiling LaTeX. Unknown error_msg)

Re-arranging the first equation and squaring,

$\begin{align*}

\sqrt{a^2+b^2} &= 32-(a+b)\\ a^2 + b^2 &= 32^2 - 64(a+b) + (a+b)^2\\ a^2 + b^2 + 64(a+b) &= a^2 + b^2 + 2ab + 32^2\\

a+b &= \frac{2ab+32^2}{64}\end{align*}$ (Error compiling LaTeX. Unknown error_msg)

From $(2)$ we have $2ab = 80$, so

$a+b &= \frac{80 + 32^2}{64} = \frac{59}{4}.$ (Error compiling LaTeX. Unknown error_msg)

The length of the hypotenuse is $p - a - b = 32 - \frac{69}{4} = \frac{59}{4}\ \mathrm{(B)}$.

Solution 2

From the formula $A = rs$, where $A$ is the area of a triangle, $r$ is its inradius, and $s$ is the semiperimeter, we can find that $r = \frac{20}{32/2} = \frac{5}{4}$. It is known that in a right triangle, $r = s - h$, where $h$ is the hypotenuse, so $h = 16 - \frac{5}{4} = \frac{59}{4}$.

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions