Difference between revisions of "2008 AMC 10A Problems/Problem 20"

(Solution 2)
(Solution 2)
Line 20: Line 20:
 
Therefore, the area of <math>ABCD = [AKD] + [AKB] + [BKC] + [CKD] = 24 + 18 + 24 + 32 = 98\ \mathrm{(D)}</math>.
 
Therefore, the area of <math>ABCD = [AKD] + [AKB] + [BKC] + [CKD] = 24 + 18 + 24 + 32 = 98\ \mathrm{(D)}</math>.
 
==Solution 2==
 
==Solution 2==
We denote <math>KA</math> with length <math>x</math> and <math>KD</math> with length <math>\frac{4x}{3}</math> (which follows from similar triangles), and we denote <math>\angle{AKD}=\theta</math>. Note that <math>\frac{4x^2}{3}\cdot \sin\theta=48\implies 4x^2\cdot \sin\theta=36</math>. The areas of triangles <math>ABK</math> and <math>CDK</math> combined are <math>\frac{x^2\cdot\sin\theta+\frac{16x^2}{9}\cdot\sin\theta}{2}=\frac{25x^2}{18}\cdot\sin\theta=36\cdot\frac{25}{18}=50</math>. Thus, <math>[ABCD]=[ABK]+[BCK]+[CDK]+[ADK]=48+50=98</math>, as desired.
+
We denote <math>KA</math> with length <math>x</math> and <math>KD</math> with length <math>\frac{4x}{3}</math> (which follows from similar triangles), and we denote <math>\angle{AKD}=\theta</math>. Note that <math>\frac{4x^2}{3}\cdot \sin\theta=48\implies 4x^2\cdot \sin\theta=36</math>. The areas of triangles <math>ABK</math> and <math>CDK</math> combined are <math>\frac{x^2\cdot\sin\theta+\frac{16x^2}{9}\cdot\sin\theta}{2}=\frac{25x^2}{18}\cdot\sin\theta=36\cdot\frac{25}{18}=50</math>. Thus, <math>[ABCD]=[ABK]+[BCK]+[CDK]+[ADK]=48+50=98\ \mathrm{(D)}</math>, as desired.
 +
-mop
  
 
==See also==
 
==See also==

Revision as of 02:53, 27 January 2022

Problem

Trapezoid $ABCD$ has bases $\overline{AB}$ and $\overline{CD}$ and diagonals intersecting at $K.$ Suppose that $AB = 9$, $DC = 12$, and the area of $\triangle AKD$ is $24.$ What is the area of trapezoid $ABCD$?

$\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100$

Solution

Solution 1

[asy] pointpen = black; pathpen = black + linewidth(0.62);  /* cse5 */ pen sm = fontsize(10);             /* small font pen */ pair D=(0,0),C=(12,0), K=(7,16/3); /* note that K.x is arbitrary, as generator for A,B */ pair A=7*K/4-3*C/4, B=7*K/4-3*D/4; D(MP("A",A,N)--MP("B",B,N)--MP("C",C)--MP("D",D)--A--C);D(B--D);D(A--MP("K",K)--D--cycle,linewidth(0.7)); MP("9",(A+B)/2,N,sm);MP("12",(C+D)/2,sm);MP("24",(A+D)/2+(1,0),E); [/asy]

Since $\overline{AB} \parallel \overline{DC}$ it follows that $\triangle ABK \sim \triangle CDK$. Thus $\frac{KA}{KC} = \frac{KB}{KD} = \frac{AB}{DC} = \frac{3}{4}$.

We now introduce the concept of area ratios: given two triangles that share the same height, the ratio of the areas is equal to the ratio of their bases. Since $\triangle AKB, \triangle AKD$ share a common altitude to $\overline{BD}$, it follows that (we let $[\triangle \ldots]$ denote the area of the triangle) $\frac{[\triangle AKB]}{[\triangle AKD]} = \frac{KB}{KD} = \frac{3}{4}$, so $[\triangle AKB] = \frac{3}{4}(24) = 18$. Similarly, we find $[\triangle DKC] = \frac{4}{3}(24) = 32$ and $[\triangle BKC] = 24$.

Therefore, the area of $ABCD = [AKD] + [AKB] + [BKC] + [CKD] = 24 + 18 + 24 + 32 = 98\ \mathrm{(D)}$.

Solution 2

We denote $KA$ with length $x$ and $KD$ with length $\frac{4x}{3}$ (which follows from similar triangles), and we denote $\angle{AKD}=\theta$. Note that $\frac{4x^2}{3}\cdot \sin\theta=48\implies 4x^2\cdot \sin\theta=36$. The areas of triangles $ABK$ and $CDK$ combined are $\frac{x^2\cdot\sin\theta+\frac{16x^2}{9}\cdot\sin\theta}{2}=\frac{25x^2}{18}\cdot\sin\theta=36\cdot\frac{25}{18}=50$. Thus, $[ABCD]=[ABK]+[BCK]+[CDK]+[ADK]=48+50=98\ \mathrm{(D)}$, as desired. -mop

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png