Difference between revisions of "2008 AMC 10A Problems/Problem 20"

(New page: Draw isoceles trapezoid ABCD. Draw diagonals intersecting at K. Obviously, AKD is congruent to BKC. Likelywise, AKB is similar to CKD. Call the altitude to base AB of triangle AKB 3x and t...)
 
m (Solution 1)
 
(18 intermediate revisions by 10 users not shown)
Line 1: Line 1:
Draw isoceles trapezoid ABCD. Draw diagonals intersecting at K. Obviously, AKD is congruent to BKC. Likelywise, AKB is similar to CKD. Call the altitude to base AB of triangle AKB 3x and the altitude to base CD of triangle CKD 4x. Now the area of the trapezoid is the sum of areas AKB, CKD, AKD, and BKC which equals . Now take isosceles trapezoid ABCD again. Drop altitudes to the base CD from point A and point B to get a rectangle and two triangles. The area of the rectangle is and the area of the two triangles is  as the lengths of the legs are 1.5 and 7x. So now you have  and simple arithmetic gives you . .
+
==Problem==
 +
[[Trapezoid]] <math>ABCD</math> has bases <math>\overline{AB}</math> and <math>\overline{CD}</math> and diagonals intersecting at <math>K.</math> Suppose that <math>AB = 9</math>, <math>DC = 12</math>, and the area of <math>\triangle AKD</math> is <math>24.</math> What is the area of trapezoid <math>ABCD</math>?
 +
 
 +
<math>\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100</math>
 +
 
 +
==Solution 1==
 +
<center><asy>
 +
pointpen = black; pathpen = black + linewidth(0.62);  /* cse5 */
 +
pen sm = fontsize(10);            /* small font pen */
 +
pair D=(0,0),C=(12,0), K=(7,16/3); /* note that K.x is arbitrary, as generator for A,B */
 +
pair A=7*K/4-3*C/4, B=7*K/4-3*D/4;
 +
D(MP("A",A,N)--MP("B",B,N)--MP("C",C)--MP("D",D)--A--C);D(B--D);D(A--MP("K",K)--D--cycle,linewidth(0.7));
 +
MP("9",(A+B)/2,N,sm);MP("12",(C+D)/2,sm);MP("24",(A+D)/2+(1,0),E);
 +
</asy></center>
 +
Since <math>\overline{AB} \parallel \overline{DC}</math> it follows that <math>\triangle ABK \sim \triangle CDK</math>. Thus <math>\frac{KA}{KC} = \frac{KB}{KD} = \frac{AB}{DC} = \frac{3}{4}</math>.  
 +
 
 +
We now introduce the concept of [[area ratios]]: given two triangles that share the same height, the ratio of the areas is equal to the ratio of their bases. Since <math>\triangle AKB, \triangle AKD</math> share a common [[altitude]] to <math>\overline{BD}</math>, it follows that (we let <math>[\triangle \ldots]</math> denote the area of the triangle) <math>\frac{[\triangle AKB]}{[\triangle AKD]} = \frac{KB}{KD} = \frac{3}{4}</math>, so <math>[\triangle AKB] = \frac{3}{4}(24) = 18</math>. Similarly, we find <math>[\triangle DKC] = \frac{4}{3}(24) = 32</math> and <math>[\triangle BKC] = 24</math>.
 +
 
 +
Therefore, the area of <math>ABCD = [AKD] + [AKB] + [BKC] + [CKD] = 24 + 18 + 24 + 32 = 98\ \mathrm{(D)}</math>.
 +
 
 +
==See also==
 +
{{AMC10 box|year=2008|ab=A|num-b=19|num-a=21}}
 +
 
 +
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 21:53, 17 October 2023

Problem

Trapezoid $ABCD$ has bases $\overline{AB}$ and $\overline{CD}$ and diagonals intersecting at $K.$ Suppose that $AB = 9$, $DC = 12$, and the area of $\triangle AKD$ is $24.$ What is the area of trapezoid $ABCD$?

$\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100$

Solution 1

[asy] pointpen = black; pathpen = black + linewidth(0.62);  /* cse5 */ pen sm = fontsize(10);             /* small font pen */ pair D=(0,0),C=(12,0), K=(7,16/3); /* note that K.x is arbitrary, as generator for A,B */ pair A=7*K/4-3*C/4, B=7*K/4-3*D/4; D(MP("A",A,N)--MP("B",B,N)--MP("C",C)--MP("D",D)--A--C);D(B--D);D(A--MP("K",K)--D--cycle,linewidth(0.7)); MP("9",(A+B)/2,N,sm);MP("12",(C+D)/2,sm);MP("24",(A+D)/2+(1,0),E); [/asy]

Since $\overline{AB} \parallel \overline{DC}$ it follows that $\triangle ABK \sim \triangle CDK$. Thus $\frac{KA}{KC} = \frac{KB}{KD} = \frac{AB}{DC} = \frac{3}{4}$.

We now introduce the concept of area ratios: given two triangles that share the same height, the ratio of the areas is equal to the ratio of their bases. Since $\triangle AKB, \triangle AKD$ share a common altitude to $\overline{BD}$, it follows that (we let $[\triangle \ldots]$ denote the area of the triangle) $\frac{[\triangle AKB]}{[\triangle AKD]} = \frac{KB}{KD} = \frac{3}{4}$, so $[\triangle AKB] = \frac{3}{4}(24) = 18$. Similarly, we find $[\triangle DKC] = \frac{4}{3}(24) = 32$ and $[\triangle BKC] = 24$.

Therefore, the area of $ABCD = [AKD] + [AKB] + [BKC] + [CKD] = 24 + 18 + 24 + 32 = 98\ \mathrm{(D)}$.

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png