2008 AMC 10A Problems/Problem 20

Revision as of 18:37, 3 September 2017 by Cocohearts (talk | contribs) (Solution)

Problem

Trapezoid $ABCD$ has bases $\overline{AB}$ and $\overline{CD}$ and diagonals intersecting at $K$. Suppose that $AB = 9$, $DC = 12$, and the area of $\triangle AKD$ is $24$. What is the area of trapezoid $ABCD$?

$\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100$

Solution

unitsize=5cm;
pointpen = black; pathpen = black + linewidth(0.62);  /* cse5 */
pen sm = fontsize(10);             /* small font pen */
pair D=(0,0),C=(12,0), K=(7,16/3); /* note that K.x is arbitrary, as generator for A,B */
pair A=7*K/4-3*C/4, B=7*K/4-3*D/4;
D(MP("A",A,N)--MP("B",B,N)--MP("C",C)--MP("D",D)--A--C);D(B--D);D(A--MP("K",K)--D--cycle,linewidth(0.7));
MP("9",(A+B)/2,N,sm);MP("12",(C+D)/2,sm);MP("24",(A+D)/2+(1,0),E);
 (Error compiling LaTeX. 3175d9566780b2a4b407ee7999b85dac0fe3c66c.asy: 3.9: cannot convert 'real' to 'void(picture pic=<default>, real x, real y=<default>, real z=<default>)' in assignment)

Since $\overline{AB} \parallel \overline{DC}$ it follows that $\triangle ABK \sim \triangle CDK$. Thus $\frac{KA}{KC} = \frac{KB}{KD} = \frac{AB}{DC} = \frac{3}{4}$.

We now introduce the concept of area ratios: given two triangles that share the same height, the ratio of the areas is equal to the ratio of their bases. Since $\triangle AKB, \triangle AKD$ share a common altitude to $\overline{BD}$, it follows that (we let $[\triangle \ldots]$ denote the area of the triangle) $\frac{[\triangle AKB]}{[\triangle AKD]} = \frac{KB}{KD} = \frac{3}{4}$, so $[\triangle AKB] = \frac{3}{4}(24) = 18$. Similarly, we find $[\triangle DKC] = \frac{4}{3}(24) = 32$ and $[\triangle BKC] = 24$.

Therefore, the area of $ABCD = [AKD] + [AKB] + [BKC] + [CKD] = 24 + 18 + 24 + 32 = 98\ \mathrm{(D)}$.

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS