Difference between revisions of "2008 AMC 10A Problems/Problem 21"

Problem

A cube with side length $1$ is sliced by a plane that passes through two diagonally opposite vertices $A$ and $C$ and the midpoints $B$ and $D$ of two opposite edges not containing $A$ or $C$, as shown. What is the area of quadrilateral $ABCD$?

$[asy] import three; unitsize(3cm); defaultpen(fontsize(8)+linewidth(0.7)); currentprojection=obliqueX; draw((0.5,0,0)--(0,0,0)--(0,0,1)--(0,0,0)--(0,1,0),linetype("4 4")); draw((0.5,0,1)--(0,0,1)--(0,1,1)--(0.5,1,1)--(0.5,0,1)--(0.5,0,0)--(0.5,1,0)--(0.5,1,1)); draw((0.5,1,0)--(0,1,0)--(0,1,1)); dot((0.5,0,0)); label("A",(0.5,0,0),WSW); dot((0,1,1)); label("C",(0,1,1),NE); dot((0.5,1,0.5)); label("D",(0.5,1,0.5),ESE); dot((0,0,0.5)); label("B",(0,0,0.5),NW);[/asy]$

$\mathrm{(A)}\ \frac{\sqrt{6}}{2}\qquad\mathrm{(B)}\ \frac{5}{4}\qquad\mathrm{(C)}\ \sqrt{2}\qquad\mathrm{(D)}\ \frac{5}{8}\qquad\mathrm{(E)}\ \frac{3}{4}$

Solution

$[asy] import three; unitsize(3cm); defaultpen(fontsize(8)+linewidth(0.7)); currentprojection=obliqueX; triple A=(0.5,0,0),C=(0,1,1),D=(0.5,1,0.5),B=(0,0,0.5); draw((0.5,0,0)--(0,0,0)--(0,0,1)--(0,0,0)--(0,1,0),linetype("4 4")); draw((0.5,0,1)--(0,0,1)--(0,1,1)--(0.5,1,1)--(0.5,0,1)--(0.5,0,0)--(0.5,1,0)--(0.5,1,1)); draw((0.5,1,0)--(0,1,0)--(0,1,1)); dot((0.5,0,0)); label("A",A,WSW); dot((0,1,1)); label("C",C,NNE); dot((0.5,1,0.5)); label("D",D,ESE); dot((0,0,0.5)); label("B",B,NNW); draw(B--C--A--B--D,linetype("4 4")); draw(A--D--C); [/asy]$

Since $AB = AD = CB = CD = \sqrt{\frac{1}{2}^2+1^2}$, it follows that $ABCD$ is a rhombus. The area of the rhombus can be computed by the formula $A = \frac 12 d_1d_2$, where $d_1,\,d_2$ are the diagonals of the rhombus (or of a kite in general). $BD$ has the same length as a face diagonal, or $\sqrt{1^2 + 1^2} = \sqrt{2}$. $AC$ is a space diagonal, with length $\sqrt{1^2+1^2+1^2} = \sqrt{3}$. Thus $A = \frac 12 \times \sqrt{2} \times \sqrt{3} = \frac{\sqrt{6}}{2}\ \mathrm{(A)}$.

See also

 2008 AMC 10A (Problems • Answer Key • Resources) Preceded byProblem 20 Followed byProblem 22 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS