Difference between revisions of "2008 AMC 10B Problems/Problem 13"

(Solution 1)
 
(14 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
For each positive integer <math>n</math>, the mean of the first <math>n</math> terms of a sequence is <math>n</math>. What is the 2008th term of the sequence?
+
For each positive integer <math>n</math>, the mean of the first <math>n</math> terms of a sequence is <math>n</math>. What is the <math>2008^{\text{th}}</math> term of the sequence?
  
 
<math>\mathrm{(A)}\ {{{2008}}} \qquad \mathrm{(B)}\ {{{4015}}} \qquad \mathrm{(C)}\ {{{4016}}} \qquad \mathrm{(D)}\ {{{4,030,056}}} \qquad \mathrm{(E)}\ {{{4,032,064}}}</math>
 
<math>\mathrm{(A)}\ {{{2008}}} \qquad \mathrm{(B)}\ {{{4015}}} \qquad \mathrm{(C)}\ {{{4016}}} \qquad \mathrm{(D)}\ {{{4,030,056}}} \qquad \mathrm{(E)}\ {{{4,032,064}}}</math>
  
==Solution==
+
==Solution 1==
Since the mean of the first <math>n</math> terms is <math>n</math>, the sum of the first <math>n</math> terms is <math>n^2</math>. Thus, the sum of the first <math>2007</math> terms is <math>2007^2</math> and the sum of the first <math>2008</math> terms is <math>2008^2</math>. Hence, the 2008th term is <math>2008^2-2007^2=(2008+2007)(2008-2007)=4015\Rightarrow \boxed{B}</math>
+
Since the mean of the first <math>n</math> terms is <math>n</math>, the sum of the first <math>n</math> terms is <math>n^2</math>. Thus, the sum of the first <math>2007</math> terms is <math>2007^2</math> and the sum of the first <math>2008</math> terms is <math>2008^2</math>. Hence, the <math>2008^{\text{th}}</math> term of the sequence is <math>2008^2-2007^2=(2008+2007)(2008-2007)=4015\Rightarrow \boxed{\text{(B)}}</math>
  
Note that <math>n^2</math> is the sum of the first n odd numbers.
+
Note that <math>n^2</math> is the sum of the first n odd integers.
 +
 
 +
==Solution 2 (Using Answer Choices)==
 +
From inspection, we see that the sum of the sequence is <math>n^2</math>. We also notice that <math>n^2</math> is the sum of the first <math>n</math> odd integers. Because <math>4015</math> is the only odd integer, <math>\boxed{B}</math> is the answer.
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2008|ab=B|num-b=12|num-a=14}}
 
{{AMC10 box|year=2008|ab=B|num-b=12|num-a=14}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 11:45, 7 June 2021

Problem

For each positive integer $n$, the mean of the first $n$ terms of a sequence is $n$. What is the $2008^{\text{th}}$ term of the sequence?

$\mathrm{(A)}\ {{{2008}}} \qquad \mathrm{(B)}\ {{{4015}}} \qquad \mathrm{(C)}\ {{{4016}}} \qquad \mathrm{(D)}\ {{{4,030,056}}} \qquad \mathrm{(E)}\ {{{4,032,064}}}$

Solution 1

Since the mean of the first $n$ terms is $n$, the sum of the first $n$ terms is $n^2$. Thus, the sum of the first $2007$ terms is $2007^2$ and the sum of the first $2008$ terms is $2008^2$. Hence, the $2008^{\text{th}}$ term of the sequence is $2008^2-2007^2=(2008+2007)(2008-2007)=4015\Rightarrow \boxed{\text{(B)}}$

Note that $n^2$ is the sum of the first n odd integers.

Solution 2 (Using Answer Choices)

From inspection, we see that the sum of the sequence is $n^2$. We also notice that $n^2$ is the sum of the first $n$ odd integers. Because $4015$ is the only odd integer, $\boxed{B}$ is the answer.

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS