Difference between revisions of "2008 AMC 10B Problems/Problem 24"

(Solution 3(Using Trig.))
Line 90: Line 90:
  
 
Let us relabel <math>AB = BC = CD = a</math> and <math>AD = b</math>.
 
Let us relabel <math>AB = BC = CD = a</math> and <math>AD = b</math>.
 +
 
By Rule of Sines on <math>\triangle ACD</math> and <math>/triangle ABD</math> respectively, <math>\frac{\sin(\angle CAD)}{a} = \frac{\sin(\angle ACD)}{b}</math>, and <math>\frac{\sin(\angle ABD)}{b} = \frac{\sin(\angle BDA)}{a}</math>
 
By Rule of Sines on <math>\triangle ACD</math> and <math>/triangle ABD</math> respectively, <math>\frac{\sin(\angle CAD)}{a} = \frac{\sin(\angle ACD)}{b}</math>, and <math>\frac{\sin(\angle ABD)}{b} = \frac{\sin(\angle BDA)}{a}</math>
  

Revision as of 16:58, 20 August 2022

Problem

Quadrilateral $ABCD$ has $AB = BC = CD$, angle $ABC = 70$ and angle $BCD = 170$. What is the measure of angle $BAD$?

$\mathrm{(A)}\ 75\qquad\mathrm{(B)}\ 80\qquad\mathrm{(C)}\ 85\qquad\mathrm{(D)}\ 90\qquad\mathrm{(E)}\ 95$

Solution 1

This solution requires the use of cyclic quadrilateral properties but could be a bit time-consuming during the contest.

To start off, draw a diagram like in solution one and label the points. Now draw $\overline{AC}$ and $\overline{BD}$ and call their intersection point $Y$. Note that triangle $BCD$ is an isosceles triangle so angles $CDB$ and $CBD$ are each $5$ degrees. Since $AB$ equals $BC$, angle $BAC$ equals $55$ degrees, thus making angle $AYB$ equal to $60$ degrees. We can also find out that angle $CYB$ equals $120$ degrees.

Extend $\overline{CD}$ and $\overline{AB}$ and let their intersection be $E$. Since angle $BEC$ plus angle $CYB$ equals $180$ degrees, quadrilateral $YCEB$ is a cyclic quadrilateral.

Next, draw a line from point $Y$ to point $E$. Since angle $YBC$ and angle $YEC$ point to the same arc, angle $YEC$ is equal to $5$ degrees. Since $EYD$ is an isosceles triangle (based on angle properties) and $YAE$ is also an isosceles triangle, we can find that $YAD$ is also an isosceles triangle. Thus, each of the other angles is $\frac{180-120}{2}=30$ degrees. Finally, we have angle $BAD$ equals $30+55=\boxed{85}$ degrees.

~Minor edits by BakedPotato66

Solution 2

First, connect the diagonal $DB$, then, draw line $DE$ such that it is congruent to $DC$ and is parallel to $AB$. Because triangle $DCB$ is isosceles and angle $DCB$ is $170^\circ$, the angles $CDB$ and $CBD$ are both $\frac{180-170}{2} = 5^\circ$. Because angle $ABC$ is $70^\circ$, we get angle $ABD$ is $65^\circ$. Next, noticing parallel lines $AB$ and $DE$ and transversal $DB$, we see that angle $BDE$ is also $65^\circ$, and subtracting off angle $CDB$ gives that angle $EDC$ is $60^\circ$.

Now, because we drew $ED = DC$, triangle $DEC$ is equilateral. We can also conclude that $EC=DC=CB$ meaning that triangle $ECB$ is isosceles, and angles $CBE$ and $CEB$ are equal.

Finally, we can set up our equation. Denote angle $BAD$ as $x^\circ$. Then, because $ABED$ is a parallelogram, the angle $DEB$ is also $x^\circ$. Then, $CEB$ is $(x-60)^\circ$. Again because $ABED$ is a parallelogram, angle $ABE$ is $(180-x)^\circ$. Subtracting angle $ABC$ gives that angle $CBE$ equals $(110-x)^\circ$. Because angle $CBE$ equals angle $CEB$, we get \[x-60=110-x\], solving into $x=\boxed{85^\circ}$.


[asy] unitsize(1cm); defaultpen(.8); real a=4; pair A=(0,0), B=a*dir(0), C=B+a*dir(110), D=C+a*dir(120), E=D+a*dir(0); draw(A--B--C--D--cycle); draw(E--C); draw(B--D); draw(B--E); draw(D--E); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,SE); label("$D$",D,N); label("$E$",E,NE); label("$60^\circ$",C + .75*dir(360-65-115-55-30)); label("$65^\circ$",B + .75*dir(180-32.5)); label("$x^\circ$",A + .5*dir(42.5)); label("$5^\circ$",D + 2.5*dir(360-60-2.5)); label("$60^\circ$",D + .75*dir(360-30)); label("$60^\circ$",E + .5*dir(360-150)); label("$5^\circ$",B + 2.5*dir(180-65-2.5)); [/asy]

Side note: this solution was inspired by some basic angle chasing and finding some 60 degree angles, which made me want to create equilateral triangles.

~Someonenumber011


Solution 3(Using Trig.)

[asy] unitsize(3 cm);  pair A, B, C, D;  A = (0,0); B = dir(85); C = B + dir(-25); D = C + dir(-35); draw(A--B--C--D--cycle); draw(A--C); draw(B--D); draw(((A + B)/2 + scale(0.02)*rotate(90)*(B - A))--((A + B)/2 + scale(0.02)*rotate(90)*(A - B))); draw(((B + C)/2 + scale(0.02)*rotate(90)*(C - B))--((B + C)/2 + scale(0.02)*rotate(90)*(B - C))); draw(((C + D)/2 + scale(0.02)*rotate(90)*(D - C))--((C + D)/2 + scale(0.02)*rotate(90)*(C - D))); dot("$A$", A, SW); dot("$B$", B, N); dot("$C$", C, NE); dot("$D$", D, SE); label("$I$", 6/7*C); [/asy]

Let the unknown $\angle BAD$ be $x$.

First, we draw diagonal $BD$ and $AC$. $I$ is the intersection of the two diagonals. The diagonals each form two isosceles triangles, $\triangle BCD$ and $\triangle ABC$.

Using this, we find: $\angle DBC = \angle CDB = 5$ and $\angle BAC = \angle BCA = 55$. Expanding on this, we can fill in a couple more angles. $\angle ABD = 70 - 5 = 65$, $\angle ACD = 170 - 55 = 115$, $\angle BIA = \angle CID = 180 - (65 + 55) = 60$, $\angle BIC =   \angle AID = 180 - 60 = 120$.

We can rewrite $\angle CAD$ and $\angle BDA$ in terms of $x$. $\angle CAD = x - 55$ and $\angle BDA = 180 - (120 + x - 55) = 115 - x$.

Let us relabel $AB = BC = CD = a$ and $AD = b$.

By Rule of Sines on $\triangle ACD$ and $/triangle ABD$ respectively, $\frac{\sin(\angle CAD)}{a} = \frac{\sin(\angle ACD)}{b}$, and $\frac{\sin(\angle ABD)}{b} = \frac{\sin(\angle BDA)}{a}$

In a more convenient form, $\frac{\sin(x-55)}{a} = \frac{\sin(115)}{b} \implies \frac{a}{b} = \frac{\sin(x-55)}{\sin(115)}$

and $\frac{\sin(65)}{b} = \frac{\sin(115-x)}{a} \implies \frac{a}{b} = \frac{\sin(115-x)}{\sin(65)}$

$\implies \frac{\sin(115-x)}{\sin(65)} = \frac{\sin(x-55)}{\sin(115)}$

Now, by identity $\sin(\theta) = \sin(180-\theta)$, $\sin(65) = \sin(115)$

Therefore, $\sin(115-x) = \sin(x-55).$ This equation is only satisfied by option $C.(85)$

~Raghu9372

~Note: I'm pretty bad at Asymptote, if anyone could edit this and fill in the angles into the diagram, that would be pretty cool.

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png