Difference between revisions of "2008 AMC 12A Problems/Problem 14"

(sol)
 
(Standardized answer choices)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
What is the area of the region defined by the [[inequality]] <math>|3x - 18| + |2y + 7|\le 3</math>?
+
What is the area of the region defined by the [[inequality]] <math>|3x-18|+|2y+7|\le3</math>?
  
<math>\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac {7}{2} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac {9}{2} \qquad \textbf{(E)}\ 5</math>
+
<math>\mathrm{(A)}\ 3\qquad\mathrm{(B)}\ \frac {7}{2}\qquad\mathrm{(C)}\ 4\qquad\mathrm{(D)}\ \frac{9}{2}\qquad\mathrm{(E)}\ 5</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 01:37, 26 April 2008

Problem

What is the area of the region defined by the inequality $|3x-18|+|2y+7|\le3$?

$\mathrm{(A)}\ 3\qquad\mathrm{(B)}\ \frac {7}{2}\qquad\mathrm{(C)}\ 4\qquad\mathrm{(D)}\ \frac{9}{2}\qquad\mathrm{(E)}\ 5$

Solution

Area is invariant under translation, so after translating left $6$ and up $3/2$ units, we have the inequality

\[|3x| + |2y|\leq 3\]

which forms a diamond centered at the origin and vertices at $(\pm 1, 0), (0, \pm 1.5)$. Thus the diagonals are of length $2$ and $3$. Using the formula $A = \frac 12 d_1 d_2$, the answer is $\frac{1}{2}(2)(3) = 3 \Rightarrow \mathrm{(A)}$.

See also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions