Difference between revisions of "2008 AMC 12A Problems/Problem 18"

(improved writeup)
(Solution)
Line 23: Line 23:
  
  
{{AMC12 box|year=2008|num-b=14|num-a=16|ab=A}}
+
{{AMC12 box|year=2008|num-b=17|num-a=19|ab=A}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 01:44, 20 February 2008

Problem

A triangle $\triangle ABC$ with sides $5$, $6$, $7$ is placed in the three-dimensional plane with one vertex on the positive $x$ axis, one on the positive $y$ axis, and one on the positive $z$ axis. Let $O$ be the origin. What is the volume if $OABC$?

$\textbf{(A)}\ \sqrt{85} \qquad \textbf{(B)}\ \sqrt{90} \qquad \textbf{(C)}\ \sqrt{95} \qquad \textbf{(D)}\ 10 \qquad  \textbf{(E)}\ \sqrt{105}$

Solution


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Without loss of generality, let $A$ be on the $x$ axis, $B$ be on the $y$ axis, and $C$ be on the $z$ axis, and let $AB, BC, CA$ have respective lenghts of 5, 6, and 7. Let $a,b,c$ denote the lengths of segments $OA,OB,OC,$ respectively. Then by the Pythagorean Theorem, \begin{align*} a^2+b^2 &=5^2 , \\  b^2+c^2&=6^2, \\ c^2+a^2 &=7^2 , \end{align*} so $a^2 = (5^2+7^2-6^2)/2 = 19$; similarly, $b^2 = 6$ and $c^2 = 30$. Since $OA$, $OB$, and $OC$ are mutually perpendicular, the tetrahedron's volume is \[abc/6 = \sqrt{a^2b^2c^2}/6 = \frac{\sqrt{19 \cdot 6 \cdot 30}}{6} = \sqrt{95},\] which is answer choice C. $\blacksquare$


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.


2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions