Difference between revisions of "2008 AMC 12A Problems/Problem 21"

(Standardized answer choices)
Line 2: Line 2:
 
A permutation <math>(a_1,a_2,a_3,a_4,a_5)</math> of <math>(1,2,3,4,5)</math> is <u>heavy-tailed</u> if <math>a_1 + a_2 < a_4 + a_5</math>.  What is the number of heavy-tailed permutations?
 
A permutation <math>(a_1,a_2,a_3,a_4,a_5)</math> of <math>(1,2,3,4,5)</math> is <u>heavy-tailed</u> if <math>a_1 + a_2 < a_4 + a_5</math>.  What is the number of heavy-tailed permutations?
  
<math>\textbf{(A)}\ 36 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 44 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 52</math>
+
<math>\mathrm{(A)}\ 36\qquad\mathrm{(B)}\ 40\qquad\textbf{(C)}\ 44\qquad\mathrm{(D)}\ 48\qquad\mathrm{(E)}\ 52</math>
  
 
==Solution==
 
==Solution==

Revision as of 01:55, 26 April 2008

Problem

A permutation $(a_1,a_2,a_3,a_4,a_5)$ of $(1,2,3,4,5)$ is heavy-tailed if $a_1 + a_2 < a_4 + a_5$. What is the number of heavy-tailed permutations?

$\mathrm{(A)}\ 36\qquad\mathrm{(B)}\ 40\qquad\textbf{(C)}\ 44\qquad\mathrm{(D)}\ 48\qquad\mathrm{(E)}\ 52$

Solution

There are $5!=120$ total permutations.

For every permutation $(a_1,a_2,a_3,a_4,a_5)$ such that $a_1 + a_2 < a_4 + a_5$, there is exactly one permutation such that $a_1 + a_2 > a_4 + a_5$. Thus it suffices to count the permutations such that $a_1 + a_2 = a_4 + a_5$.

$1+4=2+3$, $1+5=2+4$, and $2+5=3+4$ are the only combinations of numbers that can satisfy $a_1 + a_2 = a_4 + a_5$.

There are $3$ combinations of numbers, $2$ possibilities of which side of the equation is $a_1+a_2$ and which side is $a_4+a_5$, and $2^2=4$ possibilities for rearranging $a_1,a_2$ and $a_4,a_5$. Thus, there are $3\cdot2\cdot4=24$ permutations such that $a_1 + a_2 = a_4 + a_5$.

Thus, the number of heavy-tailed permutations is $\frac{120-24}{2}=48 \Rightarrow D$.

See also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions