Difference between revisions of "2008 AMC 12A Problems/Problem 22"

(Solution 2 (without trigonometry))
(Solution 2 (without trigonometry))
Line 58: Line 58:
  
 
Draw the center of the circle. Then connect the radius to a far corner of the box and a partial radius to the closer corner of the box.
 
Draw the center of the circle. Then connect the radius to a far corner of the box and a partial radius to the closer corner of the box.
 +
 
Then, drop a perpendicular down between the radiis.
 
Then, drop a perpendicular down between the radiis.
 +
 
Now we write the length of perpendiculars in terms of the segmented radii and the full radii.
 
Now we write the length of perpendiculars in terms of the segmented radii and the full radii.
  
Line 84: Line 86:
 
draw((0,0)--(-0.5,3.9686));</asy>
 
draw((0,0)--(-0.5,3.9686));</asy>
  
Since i can't write latx stuff, lets skip to the end.
+
Since i can't write latex stuff, lets skip to the end. (lolol)
  
 
we have x^2 + xsqrt3 - 15 = 0. Utilize quadratic equation.
 
we have x^2 + xsqrt3 - 15 = 0. Utilize quadratic equation.
 +
 
We now have x = (-3 + sqrt63)/2
 
We now have x = (-3 + sqrt63)/2
 +
 
take out the 9 from the sqrt and we have:
 
take out the 9 from the sqrt and we have:
  

Revision as of 04:28, 27 January 2011

The following problem is from both the 2008 AMC 12A #22 and 2004 AMC 10A #25, so both problems redirect to this page.

Problem

A round table has radius $4$. Six rectangular place mats are placed on the table. Each place mat has width $1$ and length $x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $x$?

[asy]unitsize(4mm); defaultpen(linewidth(.8)+fontsize(8)); draw(Circle((0,0),4)); path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle; draw(mat); draw(rotate(60)*mat); draw(rotate(120)*mat); draw(rotate(180)*mat); draw(rotate(240)*mat); draw(rotate(300)*mat); label("\(x\)",(-1.55,2.1),E); label("\(1\)",(-0.5,3.8),S);[/asy]

$\mathrm{(A)}\ 2\sqrt{5}-\sqrt{3}\qquad\mathrm{(B)}\ 3\qquad\mathrm{(C)}\ \frac{3\sqrt{7}-\sqrt{3}}{2}\qquad\mathrm{(D)}\ 2\sqrt{3}\qquad\mathrm{(E)}\ \frac{5+2\sqrt{3}}{2}$

Solution

Solution 1 (trigonometry)

Let one of the mats be $ABCD$, and the center be $O$ as shown:

[asy]unitsize(8mm); defaultpen(linewidth(.8)+fontsize(8)); draw(Circle((0,0),4)); path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle; draw(mat); draw(rotate(60)*mat); draw(rotate(120)*mat); draw(rotate(180)*mat); draw(rotate(240)*mat); draw(rotate(300)*mat); label("\(x\)",(-1.55,2.1),E); label("\(x\)",(0.03,1.5),E); label("\(A\)",(-3.6,2.5513),E); label("\(B\)",(-3.15,1.35),E); label("\(C\)",(0.05,3.20),E); label("\(D\)",(-0.75,4.15),E); label("\(O\)",(0.00,-0.10),E); label("\(1\)",(-0.1,3.8),S); label("\(4\)",(-0.4,2.2),S); draw((0,0)--(0,3.103)); draw((0,0)--(-2.687,1.5513)); draw((0,0)--(-0.5,3.9686));[/asy]

Since there are $6$ mats, $\Delta BOC$ is equilateral. So, $BC=CO=x$. Also, $\angle OCD = \angle OCB + \angle BCD = 60^\circ+90^\circ=150^\circ$.

By the Law of Cosines: $4^2=1^2+x^2-2\cdot1\cdot x \cdot \cos(150^\circ) \Rightarrow x^2 + x\sqrt{3} - 15 = 0 \Rightarrow x = \frac{-\sqrt{3}\pm 3\sqrt{7}}{2}$.

Since $x$ must be positive, $x = \frac{3\sqrt{7}-\sqrt{3}}{2} \Rightarrow C$.

Solution 2 (without trigonometry)

See Math Jam

Since that link doesn't really lead to anything now, here it is:

Draw the center of the circle. Then connect the radius to a far corner of the box and a partial radius to the closer corner of the box.

Then, drop a perpendicular down between the radiis.

Now we write the length of perpendiculars in terms of the segmented radii and the full radii.

[asy]unitsize(8mm); defaultpen(linewidth(.8)+fontsize(8)); draw(Circle((0,0),4)); path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle; draw(mat); draw(rotate(60)*mat); draw(rotate(120)*mat); draw(rotate(180)*mat); draw(rotate(240)*mat); draw(rotate(300)*mat); label("\(x\)",(-1.55,2.1),E); label("\(x\)",(0.03,1.5),E); label("\(A\)",(-3.6,2.5513),E); label("\(B\)",(-3.15,1.35),E); label("\(C\)",(0.05,3.20),E); label("\(D\)",(-0.75,4.15),E); label("\(O\)",(0.00,-0.10),E); label("\(1\)",(-0.1,3.8),S); label("\(4\)",(-0.4,2.2),S); draw((0,0)--(0,3.103)); draw((0,0)--(-2.687,1.5513)); draw((0,0)--(-0.5,3.9686));[/asy]

Since i can't write latex stuff, lets skip to the end. (lolol)

we have x^2 + xsqrt3 - 15 = 0. Utilize quadratic equation.

We now have x = (-3 + sqrt63)/2

take out the 9 from the sqrt and we have:

(3sqrt7 - 3)/2, answer choice C.

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions