Difference between revisions of "2008 AMC 12A Problems/Problem 22"

(Solution 2 (without trigonometry))
(Solution 2 (without trigonometry))
Line 52: Line 52:
  
 
=== Solution 2 (without trigonometry) ===
 
=== Solution 2 (without trigonometry) ===
 +
Draw <math>OD</math> and <math>OC</math> as in the diagram. Draw the altitude from <math>O</math> to <math>DC</math> and call the intersection <math>E</math>
  
[http://www.artofproblemsolving.com/Community/AoPS_Y_MJ_Transcripts.php?mj_id=218  See Math Jam]
 
 
Since that link doesn't really lead to anything now, here it is:
 
 
Draw the center of the circle. Then connect the radius to a far corner of the box and a partial radius to the closer corner of the box.
 
 
Then, drop a perpendicular down between the radiis.
 
 
Now we write the length of perpendiculars in terms of the segmented radii and the full radii.
 
  
 
<asy>unitsize(8mm);
 
<asy>unitsize(8mm);
Line 86: Line 78:
 
draw((0,0)--(-0.5,3.9686));</asy>
 
draw((0,0)--(-0.5,3.9686));</asy>
  
Since i can't write latex stuff, lets skip to the end. (lolol)
+
As proved in the first solution, <math> \angle OCD = 150^\circ</math>.  
 
+
That makes <math>\Delta OCE</math> a <math>30-60-90</math> triangle, so <math>OE = \frac{x}{2}</math> and <math>CE= \frac{x\sqrt 3}{2}</math>
we have x^2 + xsqrt3 - 15 = 0. Utilize quadratic equation.
 
 
 
We now have x = (-3 + sqrt63)/2
 
  
take out the 9 from the sqrt and we have:
+
Since <math> \Delta OED</math> is a right triangle,
 +
<math>\left({\frac{x}{2}}\right)^2 + \left({\frac{x\sqrt 3}{2} +1}\right)^2 = 4^2 \Rightarrow  x^2+x\sqrt3-15 = 0</math>
  
(3sqrt7 - 3)/2, answer choice C.
+
Solving for <math>x</math> gives <math> x =\frac{3\sqrt{7}-\sqrt{3}}{2}\Rightarrow C </math>
  
 
==See Also==
 
==See Also==

Revision as of 17:09, 27 January 2011

The following problem is from both the 2008 AMC 12A #22 and 2004 AMC 10A #25, so both problems redirect to this page.

Problem

A round table has radius $4$. Six rectangular place mats are placed on the table. Each place mat has width $1$ and length $x$ as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length $x$. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is $x$?

[asy]unitsize(4mm); defaultpen(linewidth(.8)+fontsize(8)); draw(Circle((0,0),4)); path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle; draw(mat); draw(rotate(60)*mat); draw(rotate(120)*mat); draw(rotate(180)*mat); draw(rotate(240)*mat); draw(rotate(300)*mat); label("\(x\)",(-1.55,2.1),E); label("\(1\)",(-0.5,3.8),S);[/asy]

$\mathrm{(A)}\ 2\sqrt{5}-\sqrt{3}\qquad\mathrm{(B)}\ 3\qquad\mathrm{(C)}\ \frac{3\sqrt{7}-\sqrt{3}}{2}\qquad\mathrm{(D)}\ 2\sqrt{3}\qquad\mathrm{(E)}\ \frac{5+2\sqrt{3}}{2}$

Solution

Solution 1 (trigonometry)

Let one of the mats be $ABCD$, and the center be $O$ as shown:

[asy]unitsize(8mm); defaultpen(linewidth(.8)+fontsize(8)); draw(Circle((0,0),4)); path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle; draw(mat); draw(rotate(60)*mat); draw(rotate(120)*mat); draw(rotate(180)*mat); draw(rotate(240)*mat); draw(rotate(300)*mat); label("\(x\)",(-1.55,2.1),E); label("\(x\)",(0.03,1.5),E); label("\(A\)",(-3.6,2.5513),E); label("\(B\)",(-3.15,1.35),E); label("\(C\)",(0.05,3.20),E); label("\(D\)",(-0.75,4.15),E); label("\(O\)",(0.00,-0.10),E); label("\(1\)",(-0.1,3.8),S); label("\(4\)",(-0.4,2.2),S); draw((0,0)--(0,3.103)); draw((0,0)--(-2.687,1.5513)); draw((0,0)--(-0.5,3.9686));[/asy]

Since there are $6$ mats, $\Delta BOC$ is equilateral. So, $BC=CO=x$. Also, $\angle OCD = \angle OCB + \angle BCD = 60^\circ+90^\circ=150^\circ$.

By the Law of Cosines: $4^2=1^2+x^2-2\cdot1\cdot x \cdot \cos(150^\circ) \Rightarrow x^2 + x\sqrt{3} - 15 = 0 \Rightarrow x = \frac{-\sqrt{3}\pm 3\sqrt{7}}{2}$.

Since $x$ must be positive, $x = \frac{3\sqrt{7}-\sqrt{3}}{2} \Rightarrow C$.

Solution 2 (without trigonometry)

Draw $OD$ and $OC$ as in the diagram. Draw the altitude from $O$ to $DC$ and call the intersection $E$


[asy]unitsize(8mm); defaultpen(linewidth(.8)+fontsize(8)); draw(Circle((0,0),4)); path mat=(-2.687,-1.5513)--(-2.687,1.5513)--(-3.687,1.5513)--(-3.687,-1.5513)--cycle; draw(mat); draw(rotate(60)*mat); draw(rotate(120)*mat); draw(rotate(180)*mat); draw(rotate(240)*mat); draw(rotate(300)*mat); label("\(x\)",(-1.55,2.1),E); label("\(x\)",(0.03,1.5),E); label("\(A\)",(-3.6,2.5513),E); label("\(B\)",(-3.15,1.35),E); label("\(C\)",(0.05,3.20),E); label("\(D\)",(-0.75,4.15),E); label("\(O\)",(0.00,-0.10),E); label("\(1\)",(-0.1,3.8),S); label("\(4\)",(-0.4,2.2),S); draw((0,0)--(0,3.103)); draw((0,0)--(-2.687,1.5513)); draw((0,0)--(-0.5,3.9686));[/asy]

As proved in the first solution, $\angle OCD = 150^\circ$. That makes $\Delta OCE$ a $30-60-90$ triangle, so $OE = \frac{x}{2}$ and $CE= \frac{x\sqrt 3}{2}$

Since $\Delta OED$ is a right triangle, $\left({\frac{x}{2}}\right)^2 + \left({\frac{x\sqrt 3}{2} +1}\right)^2 = 4^2 \Rightarrow  x^2+x\sqrt3-15 = 0$

Solving for $x$ gives $x =\frac{3\sqrt{7}-\sqrt{3}}{2}\Rightarrow C$

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions