Difference between revisions of "2008 AMC 8 Problems/Problem 22"

(Solution 2)
m
 
(19 intermediate revisions by 9 users not shown)
Line 8: Line 8:
 
\textbf{(E)}\ 34</math>
 
\textbf{(E)}\ 34</math>
  
==Solution==
+
==Solution 1==
If <math>\frac{n}{3}</math> is a three-digit whole number, <math>n</math> must be divisible by 3 and be <math>\ge 100\cdot 3=300</math>. If <math>3n</math> is three digits, n must be <math>\le \frac{999}{3}=333</math> So it must be divisible by three and between 300 and 333. There are <math>\boxed{\textbf{(A)}\ 12}</math> such numbers, which you can find by direct counting.
+
Instead of finding n, we find <math>x=\frac{n}{3}</math>. We want <math>x</math> and <math>9x</math> to be three-digit whole numbers. The smallest three-digit whole number is <math>100</math>, so that is our minimum value for <math>x</math>, since if <math>x \in \mathbb{Z^+}</math>, then <math>9x \in \mathbb{Z^+}</math>. The largest three-digit whole number divisible by <math>9</math> is <math>999</math>, so our maximum value for <math>x</math> is <math>\frac{999}{9}=111</math>. There are <math>12</math> whole numbers in the closed set <math>\left[100,111\right]</math> , so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
 +
 
 +
- ColtsFan10
  
 
==Solution 2==
 
==Solution 2==
Instead of finding n, we find <math>x=\frac{n}{3}</math>. We want <math>x</math> and <math>9x</math> to be three-digit whole numbers. The smallest three-digit whole number is <math>100</math>, so that is our minimum value for <math>x</math>, since if <math>x \in \mathbb{W}</math>, then <math>9x \in \mathbb{W}</math>. The largest three-digit whole number divisible by <math>9</math> is <math>999</math>, so our maximum value for <math>x</math> is <math>\frac{999}{9}=111</math>. There are <math>12</math> numbers in the closed set <math>\left[100,111\right]</math> , so the answer is <math>\boxed{\textbf{(A)}\ 12}</math>.
+
 +
We can set the following inequalities up to satisfy the conditions given by the question,
 +
<math>100 \leq \frac{n}{3} \leq 999</math>,
 +
and
 +
<math>100 \leq 3n \leq 999</math>.
 +
Once we simplify these and combine the restrictions, we get the inequality, <math>300 \leq n \leq 333</math>.
 +
Now we have to find all multiples of 3 in this range for <math>\frac{n}{3}</math> to be an integer. We can compute this by setting <math>\frac{n}
 +
{3}=x</math>, where <math>x \in \mathbb{Z^+}</math>. Substituting <math>x</math> for <math>n</math> in the previous inequality, we get, <math>100 \leq x \leq 111</math>, and there are <math>111-100+1</math> integers in this range giving us the answer, <math>\boxed{\textbf{(A)}\ 12}</math>.
 +
 
 +
- kn07
 +
 
 +
 
 +
 
 +
 
 +
==Solution 3==
 +
 
 +
So we know the largest <math>3</math> digit number is <math>999</math> and the lowest is <math>100</math>. This means <math>\dfrac{n}{3} \ge 100 \rightarrow n \ge 300</math> but <math>3n \le 999 \rightarrow n \le 333</math>. So we have the set <math>{300, 301, 302, \cdots, 330, 331, 332, 333}</math> for <math>n</math>. Now we have to find the multiples of <math>3</math> suitable for <math>n</math>, or else <math>\dfrac{n}{3}</math> will be a decimal. Only numbers <math>{300, 303, \cdots, 333}</math> are counted. We can  divide by <math>3</math> to make the difference <math>1</math> again, getting <math>{100, 101 \cdots , 111}</math>. Due to it being inclusive, we have <math>111-100+1 =\boxed{\textbf{(A) } 12}</math>
 +
 
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/rQUwNC0gqdg?t=230
 +
 
 +
==Video Solution 2==
 +
https://youtu.be/TFAp4X-OeE4 - Soo, DRMS, NM
  
- ColtsFan10
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2008|num-b=21|num-a=23}}
 
{{AMC8 box|year=2008|num-b=21|num-a=23}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 20:57, 26 January 2024

Problem

For how many positive integer values of $n$ are both $\frac{n}{3}$ and $3n$ three-digit whole numbers?

$\textbf{(A)}\ 12\qquad \textbf{(B)}\ 21\qquad \textbf{(C)}\ 27\qquad \textbf{(D)}\ 33\qquad \textbf{(E)}\ 34$

Solution 1

Instead of finding n, we find $x=\frac{n}{3}$. We want $x$ and $9x$ to be three-digit whole numbers. The smallest three-digit whole number is $100$, so that is our minimum value for $x$, since if $x \in \mathbb{Z^+}$, then $9x \in \mathbb{Z^+}$. The largest three-digit whole number divisible by $9$ is $999$, so our maximum value for $x$ is $\frac{999}{9}=111$. There are $12$ whole numbers in the closed set $\left[100,111\right]$ , so the answer is $\boxed{\textbf{(A)}\ 12}$.

- ColtsFan10

Solution 2

We can set the following inequalities up to satisfy the conditions given by the question, $100 \leq \frac{n}{3} \leq 999$, and $100 \leq 3n \leq 999$. Once we simplify these and combine the restrictions, we get the inequality, $300 \leq n \leq 333$. Now we have to find all multiples of 3 in this range for $\frac{n}{3}$ to be an integer. We can compute this by setting $\frac{n} {3}=x$, where $x \in \mathbb{Z^+}$. Substituting $x$ for $n$ in the previous inequality, we get, $100 \leq x \leq 111$, and there are $111-100+1$ integers in this range giving us the answer, $\boxed{\textbf{(A)}\ 12}$.

- kn07



Solution 3

So we know the largest $3$ digit number is $999$ and the lowest is $100$. This means $\dfrac{n}{3} \ge 100 \rightarrow n \ge 300$ but $3n \le 999 \rightarrow n \le 333$. So we have the set ${300, 301, 302, \cdots, 330, 331, 332, 333}$ for $n$. Now we have to find the multiples of $3$ suitable for $n$, or else $\dfrac{n}{3}$ will be a decimal. Only numbers ${300, 303, \cdots, 333}$ are counted. We can divide by $3$ to make the difference $1$ again, getting ${100, 101 \cdots , 111}$. Due to it being inclusive, we have $111-100+1 =\boxed{\textbf{(A) } 12}$

Video Solution by OmegaLearn

https://youtu.be/rQUwNC0gqdg?t=230

Video Solution 2

https://youtu.be/TFAp4X-OeE4 - Soo, DRMS, NM


See Also

2008 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png