During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

# Difference between revisions of "2008 Mock ARML 2 Problems/Problem 8"

## Problem

Given that $\sum_{i = 0}^{n}a_ia_{n - i} = 1$ and $a_n > 0$ for all non-negative integers $n$, evaluate $\sum_{j = 0}^{\infty}\frac {a_j}{2^j}$.

## Solution

The motivating factor for this solution is the form of the first summation, which might remind us of the expansion of the coefficients of the product of two multinomials (or generating functions).

Let $x$ be an arbitrary number; note that

\begin{align*}\left[\sum_{j = 0}^{\infty} a_jx^j\right]^2 &= (a_0 + a_1 \cdot x + a_2 \cdot x^2 + \cdots)^2\\ &= a_0^2 + (a_0a_1 + a_1a_0)x + (a_0a_2 + a_1a_1 + a_2a_0)x^2 + \cdots\end{align*} (Error compiling LaTeX. ! Package amsmath Error: \begin{align*} allowed only in paragraph mode.)

By the given, the coefficients on the right-hand side are all equal to $1$, yielding the geometric series:

$\left[\sum_{j = 0}^{\infty} a_jx^j\right]^2 = 1 + x + x^2 + \cdots = \frac{1}{1-x}$

For $x = \frac{1}{2}$, this becomes $\left[\sum_{j = 0}^{\infty}\frac {a_j}{2^j}\right]^2 = 2$, and the answer is $\boxed{\sqrt{2}}$.