# Difference between revisions of "2008 UNCO Math Contest II Problems/Problem 10"

## Problem

Let $f(n,2)$ be the number of ways of splitting $2n$ people into $n$ groups, each of size $2$. As an example,

the $4$ people $A, B, C, D$ can be split into $3$ groups: $\fbox{AB} \ \fbox{CD} ; \fbox{AC} \ \fbox{BD} ;$ and $\fbox{AD} \ \fbox{BC}.$

Hence $f(2,2)= 3.$

(a) Compute $f(3,2)$ and $f(4,2).$

(b) Conjecture a formula for $f(n,2).$

(c) Let $f(n,3)$ be the number of ways of splitting $\left \{1, 2, 3,\ldots ,3n \right \}$ into $n$ subsets of size $3$. Compute $f(2,3),f(3,3)$ and conjecture a formula for $f(n,3).$

## Solution

(a) $f(3,2)=15$

(b) $f(n,2)=(2n-1)!!$

(c) $f(2,3)=\binom{5}{2} ; f(3,3)=\binom{8}{2} \binom{5}{2} ;f(n,3)=\frac{(3n)!}{6^n \cdot n!}$

## See Also

 2008 UNCO Math Contest II (Problems • Answer Key • Resources) Preceded byProblem 9 Followed byLast Question 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 All UNCO Math Contest Problems and Solutions
Invalid username
Login to AoPS