Difference between revisions of "2008 USAMO Problems/Problem 2"

(Fixed link)
Line 12: Line 12:
{{USAMO newbox|year=2008|num-b=1|num-a=3}}
{{USAMO newbox|year=2008|num-b=1|num-a=3}}
* <url>Forum/viewtopic.php?t=202907 Discussion on AoPS/MathLinks</url>
* <url>viewtopic.php?t=202907 Discussion on AoPS/MathLinks</url>
[[Category:Olympiad Geometry Problems]]
[[Category:Olympiad Geometry Problems]]

Revision as of 19:57, 1 May 2008


(Zuming Feng) Let $ABC$ be an acute, scalene triangle, and let $M$, $N$, and $P$ be the midpoints of $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$, respectively. Let the perpendicular bisectors of $\overline{AB}$ and $\overline{AC}$ intersect ray $AM$ in points $D$ and $E$ respectively, and let lines $BD$ and $CE$ intersect in point $F$, inside of triangle $ABC$. Prove that points $A$, $N$, $F$, and $P$ all lie on one circle.


Solution 1

Solution 2

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.


2008 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAMO Problems and Solutions
  • <url>viewtopic.php?t=202907 Discussion on AoPS/MathLinks</url>
Invalid username
Login to AoPS