Difference between revisions of "2009 AIME II Problems"

(tasks 1 to 4)
(problems 6-10)
Line 27: Line 27:
  
 
== Problem 6 ==
 
== Problem 6 ==
 +
Let <math>m</math> be the number of five-element subsets that can be chosen from the set of the first <math>14</math> natural numbers so that at least two of the five numbers are consecutive. Find the remainder when <math>m</math> is divided by <math>1000</math>.
  
 
[[2009 AIME II Problems/Problem 6|Solution]]
 
[[2009 AIME II Problems/Problem 6|Solution]]
  
 
== Problem 7 ==
 
== Problem 7 ==
 +
Define <math>n!!</math> to be <math>n(n-2)(n-4)\cdots 3\cdot 1</math> for <math>n</math> odd and <math>n(n-2)(n-4)\cdots 4\cdot 2</math> for <math>n</math> even. When <math>\sum_{i=1}^{2009} \frac{(2i-1)!!}{(2i)!!}</math> is expressed as a fraction in lowest terms, its denominator is <math>2^ab</math> with <math>b</math> odd. Find <math>\dfrac{ab}{10}</math>.
  
 
[[2009 AIME II Problems/Problem 7|Solution]]
 
[[2009 AIME II Problems/Problem 7|Solution]]
  
 
== Problem 8 ==
 
== Problem 8 ==
 +
Dave rolls a fair six-sided die until a six appears for the first time. Independently, Linda rolls a fair six-sided die until a six appears for the first time. Let <math>m</math> and <math>n</math> be relatively prime positive integers such that <math>\dfrac mn</math> is the probability that the number of times Dave rolls his die is equal to or within one of the number of times Linda rolls her die. Find <math>m+n</math>.
  
 
[[2009 AIME II Problems/Problem 8|Solution]]
 
[[2009 AIME II Problems/Problem 8|Solution]]
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
Let <math>m</math> be the number of solutions in positive integers to the equation <math>4x+3y+2z=2009</math>, and let <math>n</math> be the number of solutions in positive integers to the equation <math>4x+3y+2z=2000</math>. Find the remainder when <math>m-n</math> is divided by <math>1000</math>.
  
 
[[2009 AIME II Problems/Problem 9|Solution]]
 
[[2009 AIME II Problems/Problem 9|Solution]]
  
 
== Problem 10 ==
 
== Problem 10 ==
 +
Four lighthouses are located at points <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math>. The lighthouse at <math>A</math> is <math>5</math> kilometers from the lighthouse at <math>B</math>, the lighthouse at <math>B</math> is <math>12</math> kilometers from the lighthouse at <math>C</math>, and the lighthouse at <math>A</math> is <math>13</math> kilometers from the lighthouse at <math>C</math>. To an observer at <math>A</math>, the angle determined by the lights at <math>B</math> and <math>D</math> and the angle determined by the lights at <math>C</math> and <math>D</math> are equal. To an observer at <math>C</math>, the angle determined by the lights at <math>A</math> and <math>B</math> and the angle determined by the lights at <math>D</math> and <math>B</math> are equal. The number of kilometers from <math>A</math> to <math>D</math> is given by <math>\frac{p\sqrt{r}}{q}</math>, where <math>p</math>, <math>q</math>, and <math>r</math> are relatively prime positive integers, and <math>r</math> is not divisible by the square of any prime. Find <math>p+q+r</math>.
  
 
[[2009 AIME II Problems/Problem 10|Solution]]
 
[[2009 AIME II Problems/Problem 10|Solution]]

Revision as of 14:33, 7 April 2009

2009 AIME II (Answer Key)
Printable version | AoPS Contest CollectionsPDF

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem 1

Before starting to paint, Bill had $130$ ounces of blue paint, $164$ ounces of red paint, and $188$ ounces of white paint. Bill painted four equally sized stripes on a wall, making a blue stripe, a red stripe, a white stripe, and a pink stirpe. Pink is a mixture of red and white, not necessarily in equal amounts. When Bill finished, he had equal amounts of blue, red, and white paint left. Find the total number of ounces of paint Bill had left.

Solution

Problem 2

Suppose that $a$, $b$, and $c$ are positive real numbers such that $a^{\log_3 7} = 27$, $b^{\log_7 11} = 49$, and $c^{\log_{11}25} = \sqrt{11}$. Find \[a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}.\]

Solution

Problem 3

In rectangle $ABCD$, $AB=100$. Let $E$ be the midpoint of $\overline{AD}$. Given that line $AC$ and line $BE$ are perpendicular, find the greatest integer less than $AD$.

Solution

Problem 4

A group of children held a grape-eating contest. When the contest was over, the winner had eaten $n$ grapes, and the child in $k$-th place had eaten $n+2-2k$ grapes. The total number of grapes eaten in the contest was $2009$. Find the smallest possible value of $n$.

Solution

Problem 5

Solution

Problem 6

Let $m$ be the number of five-element subsets that can be chosen from the set of the first $14$ natural numbers so that at least two of the five numbers are consecutive. Find the remainder when $m$ is divided by $1000$.

Solution

Problem 7

Define $n!!$ to be $n(n-2)(n-4)\cdots 3\cdot 1$ for $n$ odd and $n(n-2)(n-4)\cdots 4\cdot 2$ for $n$ even. When $\sum_{i=1}^{2009} \frac{(2i-1)!!}{(2i)!!}$ is expressed as a fraction in lowest terms, its denominator is $2^ab$ with $b$ odd. Find $\dfrac{ab}{10}$.

Solution

Problem 8

Dave rolls a fair six-sided die until a six appears for the first time. Independently, Linda rolls a fair six-sided die until a six appears for the first time. Let $m$ and $n$ be relatively prime positive integers such that $\dfrac mn$ is the probability that the number of times Dave rolls his die is equal to or within one of the number of times Linda rolls her die. Find $m+n$.

Solution

Problem 9

Let $m$ be the number of solutions in positive integers to the equation $4x+3y+2z=2009$, and let $n$ be the number of solutions in positive integers to the equation $4x+3y+2z=2000$. Find the remainder when $m-n$ is divided by $1000$.

Solution

Problem 10

Four lighthouses are located at points $A$, $B$, $C$, and $D$. The lighthouse at $A$ is $5$ kilometers from the lighthouse at $B$, the lighthouse at $B$ is $12$ kilometers from the lighthouse at $C$, and the lighthouse at $A$ is $13$ kilometers from the lighthouse at $C$. To an observer at $A$, the angle determined by the lights at $B$ and $D$ and the angle determined by the lights at $C$ and $D$ are equal. To an observer at $C$, the angle determined by the lights at $A$ and $B$ and the angle determined by the lights at $D$ and $B$ are equal. The number of kilometers from $A$ to $D$ is given by $\frac{p\sqrt{r}}{q}$, where $p$, $q$, and $r$ are relatively prime positive integers, and $r$ is not divisible by the square of any prime. Find $p+q+r$.

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

See also