Difference between revisions of "2009 AIME II Problems/Problem 2"

(New page: == Problem == Suppose that <math>a</math>, <math>b</math>, and <math>c</math> are positive real numbers such that <math>a^{\log_3 7} = 27</math>, <math>b^{\log_7 11} = 49</math>, and <math...)
 
(8 intermediate revisions by 6 users not shown)
Line 3: Line 3:
 
<cmath> a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}. </cmath>
 
<cmath> a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}. </cmath>
  
== Solution ==
+
== Solution 1 ==
  
 
First, we have:
 
First, we have:
Line 50: Line 50:
  
 
and therefore the answer is <math>343+121+5 = \boxed{469}</math>.
 
and therefore the answer is <math>343+121+5 = \boxed{469}</math>.
 +
 +
== Solution 2 ==
 +
 +
We know from the first three equations that <math>\log_a27</math> = <math>\log_37</math>, <math>\log_b49</math> = <math>\log_711</math>, and <math>\log_c\sqrt{11}</math> = <math>\log_{11}25</math>. Substituting, we find
 +
 +
<math>a^{(\log_a27)(\log_37)} + b^{(\log_b49)(\log_711)} + c^{(\log_c\sqrt {11})(\log_{11}25)}</math>.
 +
 +
We know that <math>x^{\log_xy} =y</math>, so we find
 +
 +
<math>27^{\log_37} + 49^{\log_711} + \sqrt {11}^{\log_{11}25}</math>
 +
 +
<math>(3^{\log_37})^3 + (7^{\log_711})^2 + ({11^{\log_{11}25}})^{1/2}</math>.
 +
 +
The <math>3</math> and the <math>\log_37</math> cancel out to make <math>7</math>, and we can do this for the other two terms. We obtain
 +
 +
<math>7^3 + 11^2 + 25^{1/2}</math>
 +
 +
<math>= 343 + 121 + 5</math>
 +
<math>= \boxed {469}</math>.
 +
 
== See Also ==
 
== See Also ==
  
 
{{AIME box|year=2009|n=II|num-b=1|num-a=3}}
 
{{AIME box|year=2009|n=II|num-b=1|num-a=3}}
 +
[[Category: Intermediate Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 20:48, 9 August 2020

Problem

Suppose that $a$, $b$, and $c$ are positive real numbers such that $a^{\log_3 7} = 27$, $b^{\log_7 11} = 49$, and $c^{\log_{11}25} = \sqrt{11}$. Find \[a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}.\]

Solution 1

First, we have: \[x^{(\log_y z)^2} = x^{\left( (\log_y z)^2 \right) } = x^{(\log_y z) \cdot (\log_y z) } = \left( x^{\log_y z} \right)^{\log_y z}\]

Now, let $x=y^w$, then we have: \[x^{\log_y z}  = \left( y^w \right)^{\log_y z}  = y^{w\log_y z}  = y^{\log_y (z^w)}  = z^w\]

This is all we need to evaluate the given formula. Note that in our case we have $27=3^3$, $49=7^2$, and $\sqrt{11}=11^{1/2}$. We can now compute:

\[a^{(\log_3 7)^2} = \left( a^{\log_3 7} \right)^{\log_3 7} = 27^{\log_3 7} = (3^3)^{\log_3 7} = 7^3 = 343\]

Similarly, we get \[b^{(\log_7 11)^2}  = (7^2)^{\log_7 11} = 11^2  = 121\]

and \[c^{(\log_{11} 25)^2} = (11^{1/2})^{\log_{11} 25} = 25^{1/2} = 5\]

and therefore the answer is $343+121+5 = \boxed{469}$.

Solution 2

We know from the first three equations that $\log_a27$ = $\log_37$, $\log_b49$ = $\log_711$, and $\log_c\sqrt{11}$ = $\log_{11}25$. Substituting, we find

$a^{(\log_a27)(\log_37)} + b^{(\log_b49)(\log_711)} + c^{(\log_c\sqrt {11})(\log_{11}25)}$.

We know that $x^{\log_xy} =y$, so we find

$27^{\log_37} + 49^{\log_711} + \sqrt {11}^{\log_{11}25}$

$(3^{\log_37})^3 + (7^{\log_711})^2 + ({11^{\log_{11}25}})^{1/2}$.

The $3$ and the $\log_37$ cancel out to make $7$, and we can do this for the other two terms. We obtain

$7^3 + 11^2 + 25^{1/2}$

$= 343 + 121 + 5$ $= \boxed {469}$.

See Also

2009 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png