Difference between revisions of "2009 AIME II Problems/Problem 3"

(Solution 2)
(Solution 2)
Line 22: Line 22:
  
 
=== Solution 2===
 
=== Solution 2===
Let <math>x</math> be the ratio of <math>BC</math> to <math>AB</math>. On the coordinate plane, plot <math>A=(0,0)</math>, <math>B=(100,0)</math>, <math>C=(100,100x)</math>, and <math>D=(0,100x)</math>. Then <math>E=(0,50x)</math>, and the slopes of <math>\overline{AC}</math> and <math>\overline{BE}</math> must multiply to <math>-1</math>. In other words,
+
Let <math>x</math> be the ratio of <math>BC</math> to <math>AB</math>. On the coordinate plane, plot <math>A=(0,0)</math>, <math>B=(100,0)</math>, <math>C=(100,100x)</math>, and <math>D=(0,100x)</math>. Then <math>E=(0,50x)</math>. Furthermore, the slope of <math>\overline{AC}</math> is <math>x</math> and the slope of <math>\overline{BE}</math> is <math>-x/2</math>. They are perpendicular, so they multiply to <math>-1</math>, that is,
 
<cmath>x\cdot-\frac{x}{2}=-1,</cmath>
 
<cmath>x\cdot-\frac{x}{2}=-1,</cmath>
 
which implies that <math>-x^2=-2</math> or <math>x=\sqrt 2</math>. Therefore <math>AD=100\sqrt 2\approx 141.42</math> so <math>\lfloor AD\rfloor=\boxed{141}</math>.
 
which implies that <math>-x^2=-2</math> or <math>x=\sqrt 2</math>. Therefore <math>AD=100\sqrt 2\approx 141.42</math> so <math>\lfloor AD\rfloor=\boxed{141}</math>.

Revision as of 20:52, 19 March 2012

Problem

In rectangle $ABCD$, $AB=100$. Let $E$ be the midpoint of $\overline{AD}$. Given that line $AC$ and line $BE$ are perpendicular, find the greatest integer less than $AD$.

Solution

Solution 1

[asy] pair A=(0,10), B=(0,0), C=(14,0), D=(14,10), Q=(0,5); draw (A--B--C--D--cycle); pair E=(7,10); draw (B--E); draw (A--C); pair F=(6.7,6.7); label("\(E\)",E,N); label("\(A\)",A,NW); label("\(B\)",B,SW); label("\(C\)",C,SE); label("\(D\)",D,NE); label("\(F\)",F,W); label("\(100\)",Q,W); [/asy]

From the problem, $AB=100$ and triangle $FBA$ is a right triangle. As $ABCD$ is a rectangle, triangles $BCA$, and $ABE$ are also right triangles. By $AA$, $\triangle FBA \sim \triangle BCA$, and $\triangle FBA \sim \triangle ABE$, so $\triangle ABE \sim \triangle BCA$. This gives $\frac {AE}{AB}= \frac {AB}{BC}$. $AE=\frac{AD}{2}$ and $BC=AD$, so $\frac {AD}{2AB}= \frac {AB}{AD}$, or $(AD)^2=2(AB)^2$, so $AD=AB \sqrt{2}$, or $100 \sqrt{2}$, so the answer is $\boxed{141}$.

Solution 2

Let $x$ be the ratio of $BC$ to $AB$. On the coordinate plane, plot $A=(0,0)$, $B=(100,0)$, $C=(100,100x)$, and $D=(0,100x)$. Then $E=(0,50x)$. Furthermore, the slope of $\overline{AC}$ is $x$ and the slope of $\overline{BE}$ is $-x/2$. They are perpendicular, so they multiply to $-1$, that is, \[x\cdot-\frac{x}{2}=-1,\] which implies that $-x^2=-2$ or $x=\sqrt 2$. Therefore $AD=100\sqrt 2\approx 141.42$ so $\lfloor AD\rfloor=\boxed{141}$.

See Also

2009 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions