Difference between revisions of "2009 AMC 10A Problems/Problem 1"

(Problem 1)
m (Reverted edits by Marylandfan805 (talk) to last revision by MathDragon2)
(Tag: Rollback)
(20 intermediate revisions by 7 users not shown)
Line 1: Line 1:
== Problem 1 ==
+
== Problem ==
One can holds <math>12</math> ounces of soda. What is the minimum number of cans needed to provide a gallon (128 ounces) of soda?
+
One can, can hold <math>12</math> ounces of soda, what is the minimum number of cans needed to provide a gallon (<math>128</math> ounces) of soda?
  
<math>
+
<math>\textbf{(A)}\ 7\qquad
\mathrm{(A)}\ 7
+
\textbf{(B)}\ 8\qquad
\qquad
+
\textbf{(C)}\ 9\qquad
\mathrm{(B)}\ 8
+
\textbf{(D)}\ 10\qquad
\qquad
+
\textbf{(E)}\ 11</math>
\mathrm{(C)}\ 9
+
 
\qquad
+
== Solution 1 ==
\mathrm{(D)}\ 10
+
<math>10</math> cans would hold <math>120</math> ounces, but <math>128>120</math>, so <math>11</math> cans are required. Thus, the answer is <math>\mathrm{\boxed{(E)}}</math>.
\qquad
+
 
\mathrm{(E)}\ 11
+
== Solution 2 ==
</math>
+
We want to find <math>\left\lceil\frac{128}{12}\right\rceil</math> because there are a whole number of cans.
 +
 
 +
<math>\frac{128}{12} = 10R8\longrightarrow 11\longrightarrow \fbox{(E)}.</math>
 +
 
 +
{{AMC10 box|year=2009|ab=A|before=First Question|num-a=2}}
 +
{{MAA Notice}}

Revision as of 20:40, 29 January 2020

Problem

One can, can hold $12$ ounces of soda, what is the minimum number of cans needed to provide a gallon ($128$ ounces) of soda?

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 8\qquad \textbf{(C)}\ 9\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 11$

Solution 1

$10$ cans would hold $120$ ounces, but $128>120$, so $11$ cans are required. Thus, the answer is $\mathrm{\boxed{(E)}}$.

Solution 2

We want to find $\left\lceil\frac{128}{12}\right\rceil$ because there are a whole number of cans.

$\frac{128}{12} = 10R8\longrightarrow 11\longrightarrow \fbox{(E)}.$

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png