Difference between revisions of "2009 AMC 10A Problems/Problem 1"

(Added solution)
m (Fixed year in AMC box)
Line 11: Line 11:
 
<math>10</math> cans would hold <math>120</math> ounces, but <math>128>120</math>, so <math>11</math> cans are required. Thus, the answer is <math>\mathrm{(E)}</math>.
 
<math>10</math> cans would hold <math>120</math> ounces, but <math>128>120</math>, so <math>11</math> cans are required. Thus, the answer is <math>\mathrm{(E)}</math>.
  
{{AMC10 box|year=2008|ab=A|before=First Question|num-a=2}}
+
{{AMC10 box|year=2009|ab=A|before=First Question|num-a=2}}

Revision as of 14:47, 15 February 2009

Problem

One can holds $12$ ounces of soda. What is the minimum number of cans needed to provide a gallon ($128$ ounces) of soda?

$\mathrm{(A)}\ 7\qquad \mathrm{(B)}\ 8\qquad \mathrm{(C)}\ 9\qquad \mathrm{(D)}\ 10\qquad \mathrm{(E)}\ 11$

Solution

$10$ cans would hold $120$ ounces, but $128>120$, so $11$ cans are required. Thus, the answer is $\mathrm{(E)}$.

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
Invalid username
Login to AoPS