2009 AMC 10A Problems/Problem 17

Revision as of 19:00, 14 February 2009 by Misof (talk | contribs) (New page: == Problem == Rectangle <math>ABCD</math> has <math>AB=4</math> and <math>BC=3</math>. Segment <math>EF</math> is constructed through <math>B</math> so that <math>EF</math> is perpendicula...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Rectangle $ABCD$ has $AB=4$ and $BC=3$. Segment $EF$ is constructed through $B$ so that $EF$ is perpendicular to $DB$, and $A$ and $C$ lie on $DE$ and $DF$, respectively. What is $EF$?

$\mathrm{(A)}\ 9 \qquad \mathrm{(B)}\ 10 \qquad \mathrm{(C)}\ \frac {125}{12} \qquad \mathrm{(D)}\ \frac {103}{9} \qquad \mathrm{(E)}\ 12$

Solution

The situation is shown in the picture below.

[asy] unitsize(0.6cm); defaultpen(0.8); pair A=(0,0), B=(4,0), C=(4,3), D=(0,3); pair EF=rotate(90)*(D-B); pair E=intersectionpoint( (0,-100)--(0,100), (B-100*EF)--(B+100*EF) ); pair F=intersectionpoint( (-100,3)--(100,3), (B-100*EF)--(B+100*EF) ); draw(A--B--C--D--cycle); draw(B--D, dashed); draw(E--F); draw(A--E, dashed); draw(C--F, dashed); label("$A$",A,W); label("$B$",B,SE); label("$C$",C,N); label("$D$",D,NW); label("$E$",E,SW); label("$F$",F,NE); label("$3$",A--D,W); label("$4$",C--D,N); [/asy]

Obviously, from the Pythagorean theorem we have $BD=5$.

Triangle $EAB$ is similar to $ABD$, as they have the same angles. Hence $BE/AB = DB/AD$, and therefore $BE = AB\cdot DB/AD = 20/3$.

Also triangle $CBF$ is similar to $ABD$. Hence $BF/BC = DB/AB$, and therefore $BF=BC\cdot DB / AB = 15/4$.

We then have $EF = EB+BF = \frac{20}3 + \frac{15}4 = \frac{80 + 45}{12} = \boxed{\frac{125}{12}}$.

See Also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions