Difference between revisions of "2009 AMC 10A Problems/Problem 19"

m (Solution)
m (Solution)
Line 20: Line 20:
 
== Solution ==
 
== Solution ==
  
The circumference of circle A is <math>200\pi</math>, and the circumference of circle B with radius <math>r</math> is <math>2r\pi</math>. Since circle B makes a complete revolution and ''ends up on the same point'', the circumference of A must be a multiple of the circumference of B, therefore the quotient must be an integer.
+
The circumference of circle <math>A</math> is <math>200\pi</math>, and the circumference of circle <math>B</math> with radius <math>r</math> is <math>2r\pi</math>. Since circle <math>B</math> makes a complete revolution and ''ends up on the same point'', the circumference of <math>A</math> must be a multiple of the circumference of <math>B</math>, therefore the quotient must be an integer.
  
 
Thus, <math>\frac{200\pi}{2\pi \cdot r} = \frac{100}{r}</math>.
 
Thus, <math>\frac{200\pi}{2\pi \cdot r} = \frac{100}{r}</math>.

Revision as of 13:35, 31 July 2019

Problem

Circle $A$ has radius $100$. Circle $B$ has an integer radius $r<100$ and remains internally tangent to circle $A$ as it rolls once around the circumference of circle $A$. The two circles have the same points of tangency at the beginning and end of circle $B$'s trip. How many possible values can $r$ have?

$\mathrm{(A)}\ 4\ \qquad \mathrm{(B)}\ 8\ \qquad \mathrm{(C)}\ 9\ \qquad \mathrm{(D)}\ 50\ \qquad \mathrm{(E)}\ 90\ \qquad$

Solution

The circumference of circle $A$ is $200\pi$, and the circumference of circle $B$ with radius $r$ is $2r\pi$. Since circle $B$ makes a complete revolution and ends up on the same point, the circumference of $A$ must be a multiple of the circumference of $B$, therefore the quotient must be an integer.

Thus, $\frac{200\pi}{2\pi \cdot r} = \frac{100}{r}$.

Therefore $r$ must then be a factor of $100$, excluding $100$ because the problem says that $r<100$. $100\: =\: 2^2\; \cdot \; 5^2$. Therefore 100 has $(2+1)\; \cdot \; (2+1)\;$ factors*. But you need to subtract 1 from 9, in order to exclude 100. Therefore the answer is $\boxed{8}$.

*The number of factors of $a^x\: \cdot \: b^y\: \cdot \: c^z\;...$ and so on, where $a, b,$ and $c$ are prime numbers, is $(x+1)(y+1)(z+1)...$.

See Also

2009 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png