# 2009 AMC 10A Problems/Problem 6

## Problem

A circle of radius $2$ is inscribed in a semicircle, as shown. The area inside the semicircle but outside the circle is shaded. What fraction of the semicircle's area is shaded? $[asy] unitsize(6mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; filldraw(Arc((0,0),4,0,180)--cycle,gray,black); filldraw(Circle((0,2),2),white,black); dot((0,2)); draw((0,2)--((0,2)+2*dir(60))); label("2",midpoint((0,2)--((0,2)+2*dir(60))),SE); [/asy]$ $\mathrm{(A)}\ \frac{1}{2} \qquad \mathrm{(B)}\ \frac{\pi}{6} \qquad \mathrm{(C)}\ \frac{2}{\pi} \qquad \mathrm{(D)}\ \frac{2}{3} \qquad \mathrm{(E)}\ \frac{3}{\pi}$

## Solution

Area of the circle inscribed inside the semicircle $= \pi r^2 \Rightarrow \pi(2^2) = 4 \pi .$ Area of the larger circle (semicircle's area x 2) $= \pi r^2 \Rightarrow \pi(4^2)= 16 \pi$ (4, or the diameter of the inscribed circle is the same thing as the radius of the semicircle). Thus, the area of the semicircle is $\frac{1}{2}(16 \pi) \Rightarrow 8 \pi .$ Part of the semicircle that is unshaded is $\frac{4 \pi}{8 \pi} = \frac{1}{2}$ Therefore, the shaded part is $1 - \frac{1}{2} = \frac{1}{2}$

Thus the answer is $\frac{1}{2}\Rightarrow \fbox{A}$