2009 AMC 12A Problems

Revision as of 17:57, 11 February 2009 by Azjps (talk | contribs) (upload)

Problem 1


Problem 2


Problem 3


Problem 4


Problem 5


Problem 6


Problem 7


Problem 8


Problem 9


Problem 10


Problem 11


Problem 12


Problem 13


Problem 14


Problem 15

For what value of $n$ is $i + 2i^2 + 3i^3 + \cdots + ni^n = 48 + 49i$?

Note: here $i = \sqrt { - 1}$.

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 48 \qquad \textbf{(C)}\ 49 \qquad \textbf{(D)}\ 97 \qquad \textbf{(E)}\ 98$


Problem 16

A circle with center $C$ is tangent to the positive $x$ and $y$-axes and externally tangent to the circle centered at $(3,0)$ with radius $1$. What is the sum of all possible radii of the circle with center $C$?

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$


Problem 17

Let $a + ar_1 + ar_1^2 + ar_1^3 + \cdots$ and $a + ar_2 + ar_2^2 + ar_2^3 + \cdots$ be two different infinite geometric series of positive numbers with the same first term. The sum of the first series is $r_1$, and the sum of the second series is $r_2$. What is $r_1 + r_2$?

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ \frac {1}{2}\qquad \textbf{(C)}\ 1\qquad \textbf{(D)}\ \frac {1 + \sqrt {5}}{2}\qquad \textbf{(E)}\ 2$


Problem 18

For $k > 0$, let $I_k = 10\ldots 064$, where there are $k$ zeros between the $1$ and the $6$. Let $N(k)$ be the number of factors of $2$ in the prime factorization of $I_k$. What is the maximum value of $N(k)$?

$\textbf{(A)}\ 6\qquad \textbf{(B)}\ 7\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 9\qquad \textbf{(E)}\ 10$


Problem 19

Andrea inscribed a circle inside a regular pentagon, circumscribed a circle around the pentagon, and calculated the area of the region between the two circles. Bethany did the same with a regular heptagon (7 sides). The areas of the two regions were $A$ and $B$, respectively. Each polygon had a side length of $2$. Which of the following is true?

$\textbf{(A)}\ A = \frac {25}{49}B\qquad \textbf{(B)}\ A = \frac {5}{7}B\qquad \textbf{(C)}\ A = B\qquad \textbf{(D)}\ A$ $= \frac {7}{5}B\qquad \textbf{(E)}\ A = \frac {49}{25}B$


Problem 20

Convex quadrilateral $ABCD$ has $AB = 9$ and $CD = 12$. Diagonals $AC$ and $BD$ intersect at $E$, $AC = 14$, and $\triangle AED$ and $\triangle BEC$ have equal areas. What is $AE$?

$\textbf{(A)}\ \frac {9}{2}\qquad \textbf{(B)}\ \frac {50}{11}\qquad \textbf{(C)}\ \frac {21}{4}\qquad \textbf{(D)}\ \frac {17}{3}\qquad \textbf{(E)}\ 6$


Problem 21

Let $p(x) = x^3 + ax^2 + bx + c$, where $a$, $b$, and $c$ are complex numbers. Suppose that

\[p(2009 + 9002\pi i) = p(2009) = p(9002) = 0\]

What is the number of nonreal zeros of $x^{12} + ax^8 + bx^4 + c$?

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 12$


Problem 22

A regular octahedron has side length $1$. A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $\frac {a\sqrt {b}}{c}$, where $a$, $b$, and $c$ are positive integers, $a$ and $c$ are relatively prime, and $b$ is not divisible by the square of any prime. What is $a + b + c$?

$\textbf{(A)}\ 10\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 12\qquad \textbf{(D)}\ 13\qquad \textbf{(E)}\ 14$


Problem 23

Functions $f$ and $g$ are quadratic, $g(x) = - f(100 - x)$, and the graph of $g$ contains the vertex of the graph of $f$. The four $x$-intercepts on the two graphs have $x$-coordinates $x_1$, $x_2$, $x_3$, and $x_4$, in increasing order, and $x_3 - x_2 = 150$. The value of $x_4 - x_1$ is $m + n\sqrt p$, where $m$, $n$, and $p$ are positive integers, and $p$ is not divisible by the square of any prime. What is $m + n + p$?

$\textbf{(A)}\ 602\qquad \textbf{(B)}\ 652\qquad \textbf{(C)}\ 702\qquad \boxed{\textbf{(D)}\ 752}\qquad \textbf{(E)}\ 802$


Problem 24

The tower function of twos is defined recursively as follows: $T(1) = 2$ and $T(n + 1) = 2^{T(n)}$ for $n\ge1$. Let $A = (T(2009))^{T(2009)}$ and $B = (T(2009))^A$. What is the largest integer $k$ such that

\[\underbrace{\log_2\log_2\log_2\ldots\log_2B}_{k\text{ times}}\]

is defined?

$\textbf{(A)}\ 2009\qquad \textbf{(B)}\ 2010\qquad \textbf{(C)}\ 2011\qquad \textbf{(D)}\ 2012\qquad \textbf{(E)}\ 2013$ Solution

Problem 25

The first two terms of a sequence are $a_1 = 1$ and $a_2 = \frac {1}{\sqrt3}$. For $n\ge1$,

\[a_{n + 2} = \frac {a_n + a_{n + 1}}{1 - a_na_{n + 1}}.\]

What is $|a_{2009}|$?

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 2 - \sqrt3\qquad \textbf{(C)}\ \frac {1}{\sqrt3}\qquad \textbf{(D)}\ 1\qquad \textbf{(E)}\ 2 + \sqrt3$


Invalid username
Login to AoPS