Difference between revisions of "2009 AMC 8 Problems/Problem 16"

(Created page with "==Problem== How many <math> 3</math>-digit positive integers have digits whose product equals <math> 24</math>? <math> \textbf{(A)}\ 12 \qquad \textbf{(B)}\ 15 \qquad \textbf{(...")
 
(Problem: removed vandalism (the phrase "By the way, danDTM suck!"))
 
(4 intermediate revisions by 4 users not shown)
Line 2: Line 2:
  
 
How many <math> 3</math>-digit positive integers have digits whose product equals <math> 24</math>?
 
How many <math> 3</math>-digit positive integers have digits whose product equals <math> 24</math>?
 +
  
 
<math> \textbf{(A)}\ 12 \qquad \textbf{(B)}\ 15 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 24</math>
 
<math> \textbf{(A)}\ 12 \qquad \textbf{(B)}\ 15 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 24</math>
 +
 +
==Solution==
 +
With the digits listed from least to greatest, the <math>3</math>-digit integers are <math>138,146,226,234</math>. <math>226</math> can be arranged in <math>\frac{3!}{2!} = 3</math> ways, and the other three can be arranged in <math>3!=6</math> ways. There are <math>3+6(3) = \boxed{\textbf{(D)}\ 21}</math> <math>3</math>-digit positive integers.
 +
 +
==See Also==
 +
{{AMC8 box|year=2009|num-b=15|num-a=17}}
 +
{{MAA Notice}}

Latest revision as of 20:22, 28 August 2016

Problem

How many $3$-digit positive integers have digits whose product equals $24$?


$\textbf{(A)}\ 12 \qquad \textbf{(B)}\ 15 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 21 \qquad \textbf{(E)}\ 24$

Solution

With the digits listed from least to greatest, the $3$-digit integers are $138,146,226,234$. $226$ can be arranged in $\frac{3!}{2!} = 3$ ways, and the other three can be arranged in $3!=6$ ways. There are $3+6(3) = \boxed{\textbf{(D)}\ 21}$ $3$-digit positive integers.

See Also

2009 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png