# 2010 AIME II Problems/Problem 12

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Two noncongruent integer-sided isosceles triangles have the same perimeter and the same area. The ratio of the lengths of the bases of the two triangles is $8: 7$. Find the minimum possible value of their common perimeter.

## Solution 1

Let the first triangle have side lengths $a$, $a$, $14c$, and the second triangle have side lengths $b$, $b$, $16c$, where $a, b, 2c \in \mathbb{Z}$.

Equal perimeter:

$\begin{array}{ccc} 2a+14c&=&2b+16c\\ a+7c&=&b+8c\\ c&=&a-b\\ \end{array}$

Equal Area:

$\begin{array}{cccl} 7c(\sqrt{a^2-(7c)^2})&=&8c(\sqrt{b^2-(8c)^2})&{}\\ 7(\sqrt{(a+7c)(a-7c)})&=&8(\sqrt{(b+8c)(b-8c)})&{}\\ 7(\sqrt{(a-7c)})&=&8(\sqrt{(b-8c)})&\text{(Note that } a+7c=b+8c)\\ 49a-343c&=&64b-512c&{}\\ 49a+169c&=&64b&{}\\ 49a+169(a-b)&=&64b&\text{(Note that } c=a-b)\\ 218a&=&233b&{}\\ \end{array}$

Since $a$ and $b$ are integer, the minimum occurs when $a=233$, $b=218$, and $c=15$. Hence, the perimeter is $2a+14c=2(233)+14(15)=\boxed{676}$.

## Solution 2

Let $s$ be the semiperimeter of the two triangles. Also, let the base of the longer triangle be $16x$ and the base of the shorter triangle be $14x$ for some arbitrary factor $x$. Then, the dimensions of the two triangles must be $s-8x,s-8x,16x$ and $s-7x,s-7x,14x$. By Heron's Formula, we have

$$\sqrt{s(8x)(8x)(s-16x)}=\sqrt{s(7x)(7x)(s-14x)}$$ $$8\sqrt{s-16x}=7\sqrt{s-14x}$$ $$64s-1024x=49s-686x$$ $$15s=338x$$

Since $15$ and $338$ are coprime, to minimize, we must have $s=338$ and $x=15$. However, we want the minimum perimeter. This means that we must multiply our minimum semiperimeter by $2$, which gives us a final answer of $\boxed{676}$.

## Solution 3

Let the first triangle have sides $16n,a,a$, so the second has sides $14n,a+n,a+n$. The height of the first triangle is $\frac{7}{8}$ the height of the second triangle. Therefore, we have $$a^2-64n^2=\frac{49}{64}((a+n)^2-49n^2).$$ Multiplying this, we get $$64a^2-4096n^2=49a^2+98an-2352n^2,$$ which simplifies to $$15a^2-98an-1744n^2=0.$$ Solving this for $a$, we get $a=n\cdot\frac{218}{15}$, so $n=15$ and $a=218$ and the perimeter is $15\cdot16+218+218=\boxed{676}$.

~john0512